©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 94

Physics

1. Ionization potential of hydrogen atom is
13.6 V . Hydrogen atoms in the ground state
are excited by monochromatic radiation of
photon energy 12.1 eV . The spectral lines
emitted by hydrogen atoms according to Bohr's theory will be

A. One

B. Two
C. Three
D. Four

Answer: C

D Watch Video Solution
2. The angular momentum of an electron in
hydrogen atom is $\frac{h}{\pi}$ The kinetic energy of the electron is
A. 13.6 eV
B. 3.4 eV
C. 1.51 eV
D. 0.85 eV

Answer: B
(Watch Video Solution

3. The centre of mass of a non uniform rod of

length L, whose mass per unit length varies as $\rho=\frac{k . x^{2}}{L}$ where k is a constant and x is the distance of any point from one end is (from the same end)

$$
\begin{aligned}
& \text { A. } \frac{3 L}{4} \\
& \text { B. } \frac{L}{8} \\
& \text { C. } \frac{K}{L} \\
& \text { D. } \frac{3 K}{L}
\end{aligned}
$$

- Watch Video Solution

4. A body of mass m is moving with speed v makes a one-dimensional collision with a stationary body of same mass on a horizontal table. They are in connect for the a very small time interval Δt. The contact force between them varies varies as shown in the graph. (Neglect friction)

The coefficient of restitution for the collision will be
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{4}$

Answer: B

- Watch Video Solution

5. A pendulum consisting of a small sphere of mass m , suspended by a inextensible and massless string of length 1 , is made to swing in a verticle plane. If the breaking strength of the string is 2 mg , then the maximum angular amplitude of the displacement from the verticle can be
A. 0°
B. 30°
C. 60°
D. 90°

Answer: C

D Watch Video Solution

6. Two identcal magnetic dipole of magnetic moment $1.0 A-m^{2}$ each, placed at a separation of 2 m with their axis perpendicular to each other. The resultant magnetic field at a point midway between the dipole is
A. $5 \times 10^{-7} T$
B. $\sqrt{5} \times 10^{-7} T$
C. $10^{-7} T$
D. $2 \times 10^{-7} T$

Answer: B

- Watch Video Solution

7. v22
A. 550Ω
B. 440Ω
C. 330Ω
D. 880Ω

Answer: D

D Watch Video Solution

8. A galvanometer of resistance 50Ω is connected to a b attery of 3 V alongwith a resistance of 2950Ω in series. A full scale deflection of 30 division is obtained in the
galvanometer in order to reduce this
deflection to 20 division. The resistance in
sereis. should be:-
A. 2950Ω
B. 1500Ω
C. 4440Ω
D. 7400Ω

Answer: B

D Watch Video Solution
9. A particle of mass m and charge Q is attached to a string of length I. It is whirled in a vertical circle in the region of an electric field
E as shown in the figure-5.105.What is the speed given to the particle at the point B,so that tension in the string when the particle is at A is ten times the weight of the particle?

A. $\sqrt{5 g L}$
B. $\sqrt{L\left(9 g+\frac{Q E}{m}\right)}$
C. $\sqrt{11 g L}$
D. $v=\sqrt{L\left(11 g+\frac{Q E}{m}\right)}$

Answer: B

D Watch Video Solution

10. In the given circuit switch K is open. The charge on the capacitor is C is steady-state is
q_{1} Now the key is closed and steady-state charge on C is q_{2} The ratio of charges q_{1} / q_{2} is

A. $3 / 2$
B. $3 / 1$
C. 1
D. $1 / 2$

D Watch Video Solution

11. An ideal coil of 10 H is connected in series
with a resistance of $5(\Omega)$ and a battery of 5 V .

2second after the connections is made, the
current flowing in ampere in the circuit is
A. $\left(1-e^{-1}\right)$
B. $(1-e)$
C.e

D. e^{-1}

Answer: A

D Watch Video Solution

12. A metal rod of resistance 20Ω is fixed along
a diameter of a conducting ring of radius
$0.1 m$ and lies on $x-y$ plane. There is a magnetic field $\vec{B}=(50 T) \vec{k}$. The ring rotates
with an angular velocity $\omega=20 \mathrm{rads}^{-1}$ about its axis. An external resistance of 10Ω is
connected across the center of the ring and
rim. The current external resistance is
A. $\frac{1}{2} A$
B. $\frac{1}{3} A$
C. $\frac{1}{4} S$
D. zero

Answer: B
(Watch Video Solution
13. The escape velocity from the earth is
$11 \mathrm{~km} / \mathrm{s}$. The escape velocity from a planet
having twice the radius and same density as
that of the earth is (in km / s)
A. $5.5 \mathrm{kms}^{-1}$
B. $11 \mathrm{kms}^{-1}$
C. $22 k m s^{-1}$
D. None of these

Answer: C
14. Two metallic balls of mass m are suspended by two strings of length L. The distance between upper ends is L. The angle at which the string will be inclined with vertical due to attraction is $(m \ll M$ where M is the mass of Earth)
A. $\tan ^{-1}\left[\frac{G M}{g L}\right]$
B. $\tan ^{-1}\left[\frac{G M}{2 g L}\right]$
C. $\tan ^{-1}\left[\frac{G M}{g L^{2}}\right]$
D. $\tan ^{-1}\left[\frac{2 G M}{g L^{2}}\right]$

Answer: C

D Watch Video Solution

15. Five rods of same dimensions are arranged
as shown in the figure. They have thermal
conductivities k_{1}, k_{2}, k_{3} and k_{5}. When points
A and C are maintained at different temperature, no heat flows through the
central rod if

A. $K_{1} K_{4}=K_{2} K_{3}$
B. $K_{1}=K_{4}$ and $K_{2}=K_{3}$
C. $\frac{K_{1}}{K_{4}}=\frac{K_{2}}{K_{3}}$
D. $K_{1} K_{2}=K_{3} K_{4}$

Answer: A
16. P - V graph of an ideal gas is as shown in
the diagram . Work done by the gas in the process $A B C D$ is

A. $4 P_{0} V_{0}$
B. $2 P_{0} V_{0}$
C. $3 P_{0} V_{0}$
D. $P_{0} V_{0}$

Answer: C

D Watch Video Solution

17. An ideal gas $(\gamma=1.5)$ is expanded adiabatically. How many times has the gas to be expanded to reduce the roo-mean-square velocity of molecules becomes half ?
A. 4 times
B. 16 times
C. 8 times
D. 2 times

Answer: B

D Watch Video Solution
18. The quantity of a charge that will be transferred by a current flow of 20 A over 1 h 30 min period is
A. $10.8 \times 10^{3} C$
B. $10.8 \times 10^{4} C$
C. $5.4 \times 10^{3} C$
D. $1.8 \times 10^{4} C$

Answer: B

D Watch Video Solution

19. A thin circular disk of radius R is uniformly charged with density $\sigma>0$ per unit area.The disk rotates about its axis with a uniform
angular speed ω.The magnetic moment of the disk is :
A. $2 \pi R^{4} \omega \rho$
B. $\pi R^{4} \omega \rho$
C. $\frac{\pi R^{4}}{2} \omega \rho$
D. $\frac{\pi R^{4}}{4} \omega \rho$

Answer: D
(Watch Video Solution
20. A juggler throws balls into air. He throws
one when ever the previous one is at its
height point. If he throws n balls each second, the height to which each ball will rise is

$$
\begin{aligned}
& \text { A. } \frac{g}{2 n^{2}} \\
& \text { B. } \frac{2 g}{n^{2}} \\
& \text { C. } \frac{2 g}{n} \\
& \text { D. } \frac{g}{4 n^{2}}
\end{aligned}
$$

Answer: A

21. A projectile is given an initial velocity of $(\hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}$, where \hat{i} is along the ground and \hat{j} is along the vertical . If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the equation of its trajectory is:

$$
\begin{aligned}
& \text { A. } y=x-5 x^{2} \\
& \text { B. } y=2 x-5 x^{2} \\
& \text { C. } 4 y=2 x-5 x^{2} \\
& \text { D. } 4 y=2 x-25 x^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

22. A force $\mathrm{F}=75 \mathrm{~N}$ is applied on a block of mass

5 kg along the fixed smooth incline as as
shown in the figure. Here gravitational acceleration $\mathrm{g}=10 \mathrm{~m} s^{-2}$. The acceleration of
the block is

A. $10 m s^{-2}$ downwards the incline
B. $10 m s^{-2}$ upwards the incline
C. $5 m s^{-2}$ downwards the incline
D. $5 m s^{-2}$ upwards the incline

Answer: B
23. Maximum acceleration of the train in which
a 50 kg box lying on its floor will ramain stationary is (Given: Co-efficient of static friction between the box and the train's floor is 0.3 and $g=10 \mathrm{~ms}^{-2}$)
A. $5.0 m s^{-2}$
B. $3.0 m s^{-2}$
C. $1.5 m s^{-2}$
D. $15 m s^{-2}$

Answer: B

- Watch Video Solution

24. The activity of a radioactive sample is measured as 9750 counts per minute at $t=0$ and as 975 counts per minute at $t=5$ minutes. The decay constant is approximately
A. 0.922 per minute
B. 0.691 per minute
C. 0.461 per minute

D. 0.230 per minute

Answer: C

D Watch Video Solution

25. In a radioactive material the activity at time
t_{1} is R_{1} and at a later time t_{2}, it is R_{1}. If the decay constant of the material is λ, then

$$
\begin{aligned}
& \text { A. } R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)} \\
& \text { B. } R_{1}=R_{2} e^{\lambda\left(t_{1}-t_{2}\right)}
\end{aligned}
$$

C. $R_{1}=R_{2}$
D. $R_{1}=R_{2}\left(t_{2} / t_{1}\right)$

Answer: A

D Watch Video Solution

26. Two identical blocks A and B, each of mass m resting on smooth floor are connected by a light spring of natural length
L and spring constant k, with the spring at its natural length. A third identical block C (mass
m) moving with a speed v along the line joining A and B collides with A. The maximum compression in the spring is

> A. $v \sqrt{\frac{m}{2 k}}$
> B. $m \sqrt{\frac{v}{2 k}}$
> C. $\sqrt{\frac{m v}{k}}$
> D. $\frac{m v}{2 k}$

Answer: A

D Watch Video Solution
27. A particle is executing SHM along a straight line. Its velocities at distances x_{1} and x_{2} from
the mean position are v_{1} and v_{2}, respectively.
Its time period is

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{\frac{x_{1}^{2}+x_{2}^{2}}{V_{1}^{2}+V_{2}^{2}}} \\
& \text { B. } 2 \pi \sqrt{\frac{x_{2}^{2}-x_{1}^{2}}{V_{1}^{2}-V_{2}^{2}}} \\
& \text { C. } 2 \pi \sqrt{\frac{V_{1}^{2}+V_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}} \\
& \text { D. } 2 \pi \sqrt{\frac{V_{1}^{2}-V_{2}^{2}}{x_{1}^{2}-x_{2}^{2}}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

28. Find the difference of kinetic energies of photoelectrons emitted from a surface by light of wavelength $2500 \AA$ and $5000 \AA$. $h=6.62 \times 10^{-34} J s$.
A. 1.61 eV
B. 2.47 eV
C. 3.96 eV
D. $3.96 \times 10^{-19} \mathrm{eV}$

Answer: B

- Watch Video Solution

29. About 5% of the power of a 100 W light bulb is converted to visible radiation. What is
the average intensity of visible radiation
(a) at a distance of 1 m from the bulb?
(b) at a distance of 10 m ?

Assume that the radiation is emitted isotropically and neglect reflection.
A. $0.4 W m^{-2}$
B. $0.5 \mathrm{Wm}^{-2}$
C. $0.6 W m^{-2}$
D. $0.8 W m^{-2}$

Answer: A

D Watch Video Solution
30. The pressure at the bottom of a tank of liquid is not proportional to
A. The density of the liquid
B. The area of the liquid surface
C. The height of the liquid
D. The acceleration

Answer: B

D Watch Video Solution
31. What increase in pressure is required to decrease the volume of 200 litre of water by
0.004 percent? Given bulk modulus of water is

2100 Mpa.
A. 210 kPa
B. 840 kPa
C. 8400 kPa
D. 84 kPa

Answer: D
(Watch Video Solution
32. A ray of light travelling in medium. A is
incident on the plane interface of two medium
W and B and gets refracted into the medium
B. The angle of incidence is I and that of refraction is r. The graph between $\sin (i)$ and $\sin (r)$ is a shown in the diagram . The correct

Statement among the following is

$\sin (\mathrm{r})$

A. Speed of light in medium B is three
fourth of that in medium A
B. Total internal reflection can take place
C. Refraction index of medium A is greater than that of medium B
D. None of these

Answer: A

D Watch Video Solution

33. A point object O is placed on the principal axis of a convex lens of focal length $f=20 \mathrm{~cm}$ at a distance of 40 cm to the left of it. The diameter of the lens is 10 . An eye is placed 60
cm to right of the lens and a distance h below
the principal axis. The maximum value of h to
see the image is
A. 0
B. 2.5 m
C. 5 cm
D. 10 cm

Answer: B

D Watch Video Solution
34.

A tangential force F acts at the top of a thin spherical shell of mass m and radius R. Find the acceleration of the shell if it rolls without slipping.
A. $\frac{5 F}{6 m}$
B. $\frac{6 F}{5 m}$
c. $\frac{7 m}{2 F}$
D. $\frac{2 m}{7 F}$

Answer: B

D Watch Video Solution

35. The moment of inertia of a uniform thin rod of length L and mass M about an axis passing through a point at a distance of $L / 3$ from one of its ends and perpendicular to the rod is
A. $\frac{M L^{2}}{12}$
B. $\frac{M L^{2}}{9}$
C. $\frac{7 M L^{2}}{48}$
D. $\frac{M L^{2}}{48}$

Answer: B

- Watch Video Solution

36. A transistor is connected in common emmitter $(C E)$ configuration. The collector supply is $8 V$ and the voltage deop across a
resistor of 800Ω in the collector circuit is 0.8 V
. If the current gain factor (α) is 0.96 , then the change in base current is

$$
\begin{aligned}
& \text { A. } \frac{1}{24} m A \\
& \text { B. } \frac{1}{12} m A \\
& \text { C. } \frac{1}{6} m A \\
& \text { D. } \frac{1}{3} m A
\end{aligned}
$$

Answer: A

D Watch Video Solution
37. The value of β of a transistor is 19. The value of α will be
A. 0.93
B. 0.98
C. 0.99
D. 0.95

Answer: D

- Watch Video Solution

38. The efficiency of carnot engine is 50% and temperature of sink is 500 K . If temperature of
source is kept constant and its efficiency raised to 60%, then the required temperature of the sink will be :-
A. 100 K
B. 600 K
C. 400 K
D. 500 K

- Watch Video Solution

39. The dimensions of $e^{2} / 4 \pi \varepsilon_{0} h c$, where e, ε_{0}, h and c are electronic charge, electric permittivity, Planck's constant and velocity of light in vacuum respectively
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M L^{0} T^{0}\right]$
C. $\left[M^{0} L T^{0}\right]$
D. $\left[M^{0} L^{0} T^{1}\right]$

Answer: A

- Watch Video Solution

40. When open pipe is closed from one end,
then third overtone of closed pipe is higher in
frequency by 150 Hz than second overtone of open pipe. The fundamental frequency of open
end pipe will be
A. 75 Hz
B. 150 Hz
C. 225 Hz

D. 300 Hz

Answer: D

D Watch Video Solution

41. Minimum thickness of a mica sheet having
$\mu=\frac{3}{2}$ which should be placed in front of one of the slits in YDSE is required to reduce the intensity at the centre of screen to half of maximum intensity is
A. $\frac{\lambda}{4}$
B. $\frac{\lambda}{8}$
C. $\frac{\lambda}{2}$
D. $\frac{\lambda}{3}$

Answer: C

D Watch Video Solution
42. The extension in a string obeying Hooke's
law is x. The speed of sound in the stretched
string is v. If the extension in the string is increased to $1.5 x$, the speed of sound will be
A. 1.22 v
B. 0.61 v
C. 1.50 v
D. 0.75 v

Answer: A
(Watch Video Solution
43. A travelling wave represented by
$y=A \sin (\omega t-k x)$
is superimposed on another wave represented by
$y=A \sin (\omega t+k x)$. The resultant is
A. A standing wave having nodes at

$$
x=\left(n+\frac{1}{2}\right) \frac{\lambda}{2}, n=0,1,2, \ldots \ldots \ldots
$$

B. A wave travelling along $+x$ direction
C. A wave travelling along -x direction
D. A standing wave having nodes at

$$
x=\frac{n \lambda}{2}, n=0,1,2, \ldots \ldots \ldots
$$

Answer: A

D Watch Video Solution

44. A force $\vec{F}=-K(y \hat{i}+x \hat{j})$ (where K is a positive constant) acts on a particle 'moving in the $x-y$ plane. Starting from the origin, the particle is taken along the positive x-axis to the point $(a, 0)$ and then parallel to the y -
axis to the point (a, a). The total work.done by
the force F on the particle is:
A. $-2 K a^{2}$
B. $2 K a^{2}$
C. $-K \alpha^{2}$
D. $K a^{2}$

Answer: C
(Watch Video Solution
45. In the figure shown the potential energy U of a particle is plotted its position 'x' from origin. Then which of the following statement is correct A particle at :

A. x_{1} is in stable equilibrium
B. x_{2} is in stable equilibrium

C. x_{3} is in stable equilibrium

D. None of these

Answer: D

D Watch Video Solution

