©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 96

Physics

1. A proton of mass m and charge $+e$ is moving in a circular orbit in a magnetic field with energy 1 MeV . What should be the
energy of alpha-particle (mass $=4 m$ and
charge $=+2 e$), so that it can revolve in the path of same radius?
A. 1 MeV
B. 4 MeV
C. 2 MeV
D. 0.5 MeV

Answer: A

D Watch Video Solution
2. Number of photons emitted by 100 W sodium lamp in one second is (Given
$\lambda=5.89 \times 10^{-9} m, h=6.625 \times \times 10^{-34} J s$
)
A. 2.9×10^{20}
B. 1.9×10^{18}
C. 2.9×10^{18}
D. 1.9×10^{20}

Answer: C

D Watch Video Solution
3. The block of mass $3 M$ is attached to the pulley system as shown in the figure. At $\mathrm{t}=0$, particle M falling vertically, strikes the block 3
M with velocity $8 \mathrm{~m} s^{-1}$ and sticks to it. The speed of the combined mass just after the
collision is

A. $8 m s^{-1}$
B. $10 m s^{-1}$
C. $5 m s^{-1}$
D. $2 m s^{-1}$

Answer: D

D Watch Video Solution

4. A charged particle (charge q) is moving in a circle of radius R with unifrom speed v. The associated magnetic moment μ is given by
A. $\frac{q v R}{2}$
B. $q v R^{2}$
C. $\frac{q v R^{2}}{2}$
D. $q v R$

D Watch Video Solution

5. Two particles A, B are moving on two concentric circles of radii R_{1}) and R_{2} with equal angular speed ω. At $t=0$,their positions and direction fo motion are shown in the
figure :

A. $-\omega\left(R_{1}+R_{2}\right) \hat{i}$
B. $\omega\left(R_{1}+R_{2}\right) \hat{i}$
C. $\omega\left(R_{1}-R_{2}\right) \hat{i}$
D. $\omega\left(R_{2}-R_{1}\right) \hat{i}$

Answer: D

D Watch Video Solution

6. A wire is wound on a long rod of material of
relative permeability $\mu_{r}=4000$ to make a solenoid.If the current through the wire is $5 A$ and number of turns per unit length is 1000 per metre,then the magnetic field inside the solenoid is:
A. $25.12 m T$
B. $12.56 m T$
C. $12.56 T$
D. $25.12 T$

Answer: D

D Watch Video Solution

7. A cell can be balanced against 110 cm and 100 cm of potentiometer wire, respectively with and without being short circuited
through a resistance of 10Ω. Its internal

resistance is

A. 1Ω
B. 0.5Ω
C. 2Ω
D. Zero

Answer: A
(Watch Video Solution
8. How many percent of work done by a battery is consumed to fully charge a capacitor which is stored as electric potential energy in the capacitor?
A. 25
B. 50
C. 70
D. 100

Answer: B

9. The total flux (in S.I units) through a closed

surface constructed around a positive charge
of 0.5 C placed in a dielectric medium of dielectric constant 10 is
A. 5.65×10^{9}
B. 1.13×10^{11}
C. 9×10^{9}
D. 8.85×10^{-12}

D Watch Video Solution

10. Each capacitor shown in the figure is $2 \mu F$.

Then the equivalent capacitance between points A and B is

A. $2 \mu F$
B. $4 \mu F$
C. $6 \mu F$
D. $8 \mu F$

Answer: A

D Watch Video Solution

11. Two coils are at fixed location: When coil 1
has no corrent and the current in coil 2 increase at the rate of $15.0 A s^{-1}$, the emf in coil 1 is $25 m V$, when coil 2 has no current and
coil 1 has a current of 3.6 A , the flux linkange in coil 2 is
A. 16 mWb
B. 10 mWb
C. 4 mWb
D. 6 mWb

Answer: D
(Watch Video Solution
12. A 100 W 200 V bulb is connected to a 160 V
power supply. The power consumption would be
A. 125 W
B. 100 W
C. 80 W
D. 64 W

Answer: D

- Watch Video Solution

13. At a distance 320 km above the surface of
the earth, the value of acceleration due to gravity will be lower than its value on the surface of the earth by nearly (radius of earth $=6400 \mathrm{~km}$)
A. 2%
B. 6%
C. 10%
D. 14%

Answer: C

- Watch Video Solution

14. The rotation period of an earth satellite close to the surface of the earth is 83 minutes.

The time period of another earth satellite in an orbit at a distance of three earth radii from
its surface will be
A. 83 min
B. $83 \sqrt{8} \mathrm{~min}$
C. 664 min

D. 249 min

Answer: C

D Watch Video Solution

15. Hot water cools from $60^{\circ} C$ to $50^{\circ} C$ in the
first 10 min and to $42^{\circ} C$ in the next 10 min .

The temperature of the surrounding is
A. $20^{\circ} C$
B. $30^{\circ} \mathrm{C}$
C. $15^{\circ} C$
D. $10^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

16. A flask is filled with $13 g$ of an ideal gas at
$27^{\circ} \mathrm{C}$ and its temperature is raised to $52^{\circ} \mathrm{C}$.

The mass of the gas that has to be released to maintain the temperature of the gas in the
flask at $52^{\circ} C$, the pressure remaining the same is
A. 2.5 g
B. 2.0 g
C. 1.5 g
D. 1.0 g

Answer: D
(Watch Video Solution
17. A carnot's engine works between a source
at a temperature of $27^{\circ} C$ and a sink at
$-123^{\circ} C$. Its efficiency is
A. 0.5
B. 0.25
C. 0.75
D. 0.4

Answer: A

D Watch Video Solution
18. A long hollow copper tube carries a current
I. Then, which of the following will be true?
A. The magnetic field B will be zero at all
points inside the tube
B. The magnetic field B will be zero only at
points on the axis of the tube
C. The magnetic field B will be maximum at
points on the axis of the tube
D. The magnetic field will be zero at any point outside the tube

Answer: D

D Watch Video Solution

19. If in circular coil of radius R, current I is
flowing and in another coil B of radius $2 R$ a current $2 I$ is flowing, then the raatio of the magnetic fields B_{A} and B_{B}, produced by them will be
A. 1
B. 2
C. $\frac{1}{2}$
D. 4

Answer: A

D Watch Video Solution
20. A stone is thrown vertically upwards. When
stone is at a height half of its maximum
height, its speed is $10 \mathrm{~ms}^{-1}$, then the
maximum height attained by the stone is (

$$
\left.g=10 m s^{-2}\right)
$$

A. 8 m
B. 10 m
C. 15 m
D. 20 m

Answer: B
(Watch Video Solution
21. A particle moves in a straight line with a constant acceleration. It changes its velocity
from $10 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ while passing through a distance $135 m$ in t seconds. The value of t is.
A. 10
B. 1.8
C. 12
D. 9

- Watch Video Solution

22. A body of mass 4 kg is accelerated up by a constant force, travels a distance of 5 m in the
first second and a distance of $2 m$ in the third second. The force acting on the body is
A. 2 N
B. 4 N
C. 6 N
D. 8 N

Answer: C

- Watch Video Solution

23. Two masses $m_{1}=5 \mathrm{~kg}$ and $m_{2}=4.8 \mathrm{~kg}$
tied to a string are hanging over a light frictionless pulley. What is the acceleration of
the masses when left free to move?

A. $0.2 m s^{-2}$
B. $9.8 m s^{-2}$
C. $5 m s^{-2}$

D. $4.8 m s^{-2}$

Answer: A

D Watch Video Solution

24. Two nuclei have mass number in the ratio
$1: 8$. What is the ratio of their nuclear radii?
A. $3: 1$
B. 1: 3
C. $1: 2$

D. $2: 1$

Answer: C

D Watch Video Solution

25. If the binding energy per nucleon in ${ }_{\cdot 3} L i^{7}$
and ${ }_{.2} \mathrm{He}^{4}$ nuclei are respectively 5.60 MeV
and 7.06 MeV , then the ebergy of proton in
the reaction ${ }_{\cdot 3} L i^{7}+p \rightarrow 2 \cdot{ }_{2} H e^{4}$ is
A. 19.6 MeV
B. 2.4 MeV
C. 8.4 MeV
D. 17.3 MeV

Answer: D

D Watch Video Solution

26. A particle moves on the X-axis according to
the equation $x=x_{0} \sin ^{2} \omega t$. The motion
simple harmonic
A. with amplitude x_{0}
B. with amplitude $2 x_{0}$
C. with time period $\left(\frac{2 \pi}{\omega}\right)$
D. with time period $\left(\frac{\pi}{\omega}\right)$

Answer: D

D Watch Video Solution
27. This time period of a particle undergoing

SHM is 16 s . It starts motion from the mean
position. After 2 s , its velocity is $0.4 \mathrm{~ms}^{-1}$. The

amplitude is

A. 1.44 m
B. 0.72 m
C. 2.88 m
D. 0.36 m

Answer: A
(Watch Video Solution
28. How many photons are emitted by a laser source of $5 \times 10^{-3} \mathrm{~W}$ operating at 632.2 nm
in 2 second $\left(h=6.63 \times 10^{-34} J s\right)$?
A. 3.2×10^{16}
B. 1.6×10^{16}
C. 4×10^{16}
D. None of these

Answer: A

D Watch Video Solution
29. Light of energy 2.0 eV falls on a metal of work function 1.4 eV . The stopping potential is
A. 0.6 V
B. 2.0 V
C. 3.4 V
D. 1.4 V

Answer: A
(Watch Video Solution
30. The neck and bottom of a bottle are 3 cm
and 15 cm in radius respectively. If the cork is pressed with a force 12 N in the neck of the bottle, then force exerted on the bottom of the bottle is :-
A. 30 N
B. 150 N
C. 300 N
D. 600 N

Answer: C
31. Two spherical soap bubbles of radii r_{1} and
r_{2} in vacuume coalesce under isothermal
condition. The resulting bubble has radius R
such that
A. $\frac{r_{1}+r_{2}}{2}$
B. $\frac{r_{1} r_{2}}{r_{1}+r_{2}}$
C. $\sqrt{r_{1} r_{2}}$
D. $\sqrt{r_{1}^{2}+r_{2}^{2}}$

Answer: D

D Watch Video Solution

32. A converging lens has a focal length of 0.12
m. To get an image of unit magnification the object should be placed at what distance from the converging lens ?
A. 0.24 m
B. 0.12 m
C. 0.06 m

D. 0.4 m

Answer: A

D Watch Video Solution

33. An illuminated object and a screen are placed 90 cm apart. What is the focal length and nature of the lens required to produce a clear image on the screen twice the size of the object?
A. 10 cm
B. 20 cm
C. 15 cm
D. 30 cm

Answer: B

- Watch Video Solution

34. A solid cylinder of mass M and radius R rolls without slipping on a flat horizontal surface. Its moment of inertia about the line of contact is MR?
A. $\left(\frac{3}{2}\right) M R^{2}$
B. $M R^{2}$
C. $2 M R^{2}$
D. $\left(\frac{2}{3}\right) M R^{2}$

Answer: A

D Watch Video Solution

35. Two wheels A and B are mounted on the same axle. Moment of inertia of A is $6 \mathrm{~kg} \mathrm{~m}{ }^{2}$ and is rotated at 600 rpm , when B is at rest.

What will be moment of inertia of B, if their

combined speed is 400 rpm ?

A. $8 \mathrm{~kg} \mathrm{~m}{ }^{2}$
B. $4 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2}$
C. $3 \mathrm{~kg} \mathrm{~m}^{2}$
D. $5 \mathrm{~kg} \mathrm{~m}{ }^{2}$

Answer: C

- Watch Video Solution

36. The output of the given logic circuit is :

A. $A \bar{B}$
B. $\bar{A} B$
C. $A B+\overline{A B}$
D. $A \bar{B}+\bar{A} B$

Answer: A
37. In a pure silicon $\left(n_{i}=10^{16} / m^{3}\right)$ crystal at $300 K, 10^{21}$ atoms of phosphorus are added per cubic meter. The new hole concentration will be
A. 10^{21} per m^{3}
B. $10^{19} \mathrm{per} \mathrm{m}{ }^{3}$
C. 10^{11} per m^{3}
D. 10^{5} per m^{3}

Answer: C

D Watch Video Solution

38. The temperature of a gas contained in a closed vessel increases by $1^{\circ} C$ when pressure of the gas is increased by 1%. The initial temperature of the gas is
A. 100 K
B. $273^{\circ} \mathrm{C}$
C. $100^{\circ} \mathrm{C}$

D. 200 K

Answer: A

D Watch Video Solution

39. The dimensional formula of magnetic induction B is
A. $\left[M^{0} A L T^{0}\right]$
B. $\left[M^{0} A L^{-1} T^{0}\right]$
C. $\left[M^{0} A L^{2} T^{0}\right]$

$$
\text { D. }\left[M^{0} A^{-1} T^{-2}\right]
$$

Answer: D

D Watch Video Solution

40. In Yonung's double-slit experiment, two
slits which are separated by 1.2 mm are
illuminated with a monochromatic light of wavelength $6000 \AA$ The interference pattern is
observed on a screen placed at a distance of 1
m from the slits. Find the number of bright fringes formed over 1 cm width on the screen.
A. 25
B. 12
C. 15
D. 20

Answer: D
(Watch Video Solution
41. A thin mica sheet of thickness $2 \times 10^{-6} \mathrm{~m}$ and refractive index $(\mu=1.5)$ is introduced in the path of the first wave. The wavelength of the wave used is $5000 \AA$. The central bright maximum will shift
A. 1
B. 2
C. 5
D. 10

- Watch Video Solution

42. A source of sound S is moving with a velocity of $50 \mathrm{~m} / \mathrm{s}$ towards a stationary observer. The observer measures the frequency of the source as 1000 Hz . What will be the apparent frequency of the source as

1000 Hz . What will be the apparent frequency of the source when it is moving away from the observer after crossing him? The velocity of the sound in the medium is $350 \mathrm{~m} / \mathrm{s}$
A. 750 Hz
B. 857 Hz
C. 1143 Hz
D. 1333 Hz

Answer: A

D Watch Video Solution

$$
\begin{aligned}
& \text { 43. Two waves represented by } \\
& y=a \sin (\omega t-k x) \text { and } y=a \cos (\omega t-k x)
\end{aligned}
$$

are superposed. The resultant wave will have an amplitude.
A. a
B. $\sqrt{2 a}$
C. 2a
D. zero

Answer: B
(Watch Video Solution
44. A spring of spring constant $5 \times 10^{3} \mathrm{~N} / \mathrm{m}$
is stretched initially by 5 cm from the unstretched position. The work required to further stretch the spring by another 5 cm is .
A. 12.50 N m
B. 18.75 N m
C. 25 Nm
D. 6.25 Nm

Answer: B
45. A person holds a bucket of weight 60 N . He walks 7 m along the horizontal path and then climbs up a vertical distance of 5 m . The work done by the man is
A. 300 J
B. 420 J
C. 720 J
D. None of these

Answer: A
(Watch Video Solution

