đず doubtnut

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET SET 97

Physics

1. Assuming f to be the frequency of the electromagnetic wave corresponding to the first
line in Balmer series, the frequency of the immediate next line is

A. 0.50 f

B. 1.35 f
C. 2.05 f
D. 2.70 f

Answer: B
2. Ionization energy of He^{+}ion at minimum energy position is
A. 13.6 eV
B. 27.2 eV
C. 54.4 eV
D. 68.0 eV

Answer: C
3. Two billiard balls undergo a head-on collision.

Ball 1 is twice as heavy as ball 2 . Initially, ball 1 moves with a speed v towards ball 2 which is at rest. Immediately after the collision, ball 1 travels at a speed of $v / 3$ in the same direction.

What type of collision has occured?
A. Inelastic
B. Elastic
C. Completely inelastic
D. Cannot be determined from the information given

Answer: B

D Watch Video Solution

4. Two blocks A and B are connected by a massless string (shown in figure) A force of 30 N is applied on block B . The distance travelled by centre of mass in 2 s starting from rest is :

A. 1 m
B. 2 m
C. 3 m
D. 4 m

Answer: B

- Watch Video Solution

5. Particles are released from rest A and side down the smooth surface of hight h to a conveyor B. The correct angular veleocity ω of the coneyor pulley of readius r to prevent any
siding on the beit as the particles transfer to the conveyou is

A. $\sqrt{2 g h}$
B. $\frac{2 g h}{r}$
C. $\frac{\sqrt{2 g h}}{r}$
D. $\frac{2 g h^{2}}{r^{2}}$
6. A circular loop with N turns has radius r. It
lies in the x - y plane carrying current I in the anticlockwise direction. If the magnetic field in the region is $\vec{B}=B_{0} \hat{i}$, then find the torque (\vec{r}) acting on the loop .
A. $B_{0} N I \pi r^{2} \hat{j}$
B. $B_{0} I \pi r^{2} \hat{j}$
C. $B_{0} N I \pi r^{2} \hat{k}$
D. $B_{0} \pi r^{2} a t k$

Answer: A

D Watch Video Solution

7. If the ratio of the concentration of electron to
that of holes in a semiconductor is $\frac{7}{5}$ and the ratio of current is $\frac{7}{4}$ then what is the ratio of their drift velocities?

> A. $\frac{4}{7}$
> B. $\frac{4}{5}$
> C. $\frac{5}{8}$
D. $\frac{5}{4}$

Answer: D

D Watch Video Solution

8. When the switch S, in the circuit shown, is closed, then the Value of current i will be :

A. $2 A$
B. $5 A$
C. $3 A$
D. $4 A$

Answer: B

- Watch Video Solution

9. Two capacitors of capacitance of

$6 \mu F$ and $12 \mu F$ are connected in series with a
battery. The voltage across the $6 \mu F$ capacitor is

2 V . Compute the total battery voltage.
A. 25 V
B. 50 V
C. 100 V

D. 150 V

Answer: B

10. Two identical metal plates are given poistive charges Q_{1} and $Q_{2}\left(<Q_{1}\right)$ respectively. If they
are now brought close together to form a parallel plate capacitor with capacitance C, the potencial difference between them is
A. $\frac{Q_{1}+Q_{2}}{2 C}$
B. $\frac{Q_{1}+Q_{2}}{C}$
C. $\frac{Q_{1}-Q_{2}}{C}$
D. $\frac{Q_{1}-Q_{2}}{2 C}$

- Watch Video Solution

11. A conducting rod of length I is moving in a transverse magnetic field of strength B with veocity v . The resistance of the rod is R. The current in the rod is

$$
\text { A. } \frac{B l v}{R}
$$

B. $B l v$
C. Zero
D. $\frac{B^{2} v^{2} l^{2}}{R}$

Answer: C

- Watch Video Solution

12. In a series $L C R$ circuit with an AC source,
$R=300 \Omega, C=20 \mu F, L=1.0 h e n r y, \varepsilon_{r m s}=50 \mathrm{~V}$
and $v=\frac{50}{\pi} H z$. Find (a) the rms current in the
circuit and (b) the rms potential differences
across the capacitor, the resistor and the inductor. Note that the sum of the rms potential differences across the three elements is greater than the rms voltage of the source.
A. 50 V

$$
\begin{aligned}
& \text { B. } \frac{50}{\sqrt{2}} V \\
& \text { C. } 40 \mathrm{~V} \\
& \text { D. } \frac{40}{\sqrt{2}} V
\end{aligned}
$$

Answer: A

D Watch Video Solution

13. Acceleration due to gravity is ' g ' on the
surface of the earth. The value of acceleration
due to gravity at a height of 32 km above earth's
surface is (Radius of the earth $=6400 \mathrm{~km}$)
A. 0.9 g
B. 0.99 g
C. 0.8 g
D. 1.01 g

Answer: B
14. Find the change in the gravitational potential energy when a body of mass m is raised to a height $n R$ above the surface of the earth. (Here, R is the radius of the earth)

$$
\begin{aligned}
& \text { A. } m g R \frac{(n-1)}{n} \\
& \text { B. } n m g R \\
& \text { C. } m g R \frac{n^{2}}{n^{2}+1} \\
& \text { D. } m g R \frac{n}{n+1}
\end{aligned}
$$

15. A glass flask of volume one litre at $0^{\circ} \mathrm{C}$ is
filled, level full of mercury at this temperature.
The flask and mercury are now heated to $100^{\circ} \mathrm{C}$. How much mercury will spill out if coefficient of volume expansion of mercury is $1.82 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ and linear expansion of glass is $0.1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ respectively?
A. $2.48 \times 10^{-2} L$
B. $1.52 \times 10^{-2} L$
C. $1.53 \times 10^{4} L$

D. $1.52 \times 10^{-4} L$

Answer: B

D Watch Video Solution

16. A carnot engine absorbs $1000 J$ of heat energy from a reservoir at $127^{\circ} \mathrm{C}$ and rejecs 600 J of heat energy during each cycle. Calculate
(i) efficiency of the engine, (ii) temperature of
sink, (iii) amount of useful work done per cycle.
A. 70% and $-10^{\circ} C$
B. 50% and $-20^{\circ} C$
C. 40% and $-33^{\circ} C$
D. 20% and $-43^{\circ} C$

Answer: C

D Watch Video Solution

17. When a gas filled in a closed vessel is heated through $1^{\circ} C$, its pressure increases by 0.4%.

What is the initial temperature of gas ?
A. 250 K

B. 2500 K

C. $250^{\circ} \mathrm{C}$

D. $25^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

18. A solenoid of 2.5 m length and 2.0 cm diameter possesses 10 turns per cm . A current of 0.5 A is flowing through it . The magnetic induction at axis inside the solenoid is

A. $2 \pi \times 10^{-4} T$

$$
\text { B. } 2 \pi \times 10^{-5} T
$$

C. $2 \pi \times 10^{-6} T$
D. $2 \pi \times 10^{-7} T$

Answer: A

- Watch Video Solution

19. A conducting loop carrying a current I is
placed in a uniform magnetic field ponting into
the plane of the paper as shown. The loop will
have a tendency to

A. Contract
B. Expand
C. Move towards +ve x - axis
D. Move towards -ve x-axis

Answer: B
20. The length of the bridge, which a grain 130
metres long and travelling at $45 \mathrm{~km} / \mathrm{hr}$ can
cross in n30 second is $200 m$ b. $225 m$ c. $245 m$
d. 250 m
A. 200 m
B. 250 m
C. 245 m
D. 250 m

Answer: C

D Watch Video Solution

21. A particle is projected with a velocity v so that its range on a horizontal plane is twice the greatest height attained. If g is acceleration due to gravity, then its range is
A. $\frac{4 v^{2}}{5 g}$
B. $\frac{4 g}{5 v^{2}}$
C. $\frac{4 v^{2}}{5 g^{2}}$

D. $\frac{4 v}{5 g^{2}}$

Answer: A

D Watch Video Solution

22. A block of metal weighing 2 kg is resting on a frictionless plane. It is struck by a jet releasing water at a rate of $1 \mathrm{kgs}^{-1}$ and at a speed of $5 m s^{-1}$. The initial acceleration of the block is

A. $2.5 m s^{-2}$

$$
\text { B. } 5.0 m s^{-2}
$$

C. $10 m s^{-2}$
D. None of the above

Answer: A

- Watch Video Solution

23. A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm . How much further it will penetrate before coming to rest
assuming that it faces constant resistance to motion?
A. 1.5 cm
B. 1.0 cm
C. 3.0 cm
D. 2.0 cm

Answer: B

24. Consider the nuclear reaction
$X^{200} \rightarrow A^{110}+B^{80}+10 n^{1}$. If the binding
energy per nucleon for X, A and B are 7.4 MeV ,
8.2 MeV and 8.1 MeV respectively, then the energy released in the reaction:
A. 70 MeV
B. 200 MeV
C. 190 MeV

D. 10 MeV

25. Two nuclei have mass numbers in the ratio
$27: 125$. What is the ratio of their nuclear radii ?
A. $5: 9$
B. 9:5
C. 5:3
D. $3: 5$

Answer: D
26. The motion of a particle executing S.H.M. is given by $x=0.01 \sin 100 \pi(t+.05)$, where x is in metres and time is in seconds. The time period is
A. 0.2 s
B. 0.1 s
C. 0.02 s
D. 0.01 s
27. The dispalcement of an object attached to a spring and excuting simple harmonic motion is given by $x=2 \times 10^{-2} \cos \pi t$ metres. The time at which at maximum speed first occurs is:
A. 0.5 s
B. 0.75 s
C. 0.125 s
D. 0.25 s

Answer: A

- Watch Video Solution

28. For plane electromagnetic waves propagating in the z-direction, which one of the following combinations gives the correct possible direction for \vec{E} and \vec{B} field respectively ?

$$
\begin{aligned}
& \text { A. }(-\hat{i}+\widehat{2 j}) \text { and }(2 \hat{i}-\hat{j}) \\
& \text { B. }(-2 \hat{i}-3 \hat{j}) \text { and }(3 \hat{i}-2 \hat{j})
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. }(2 \hat{i}+3 \hat{j}) \text { and }(\hat{i}+2 \hat{j}) \\
& \text { D. }(3 \hat{i}-4 \hat{j}) \text { and }(4 \hat{i}-3 \hat{j})
\end{aligned}
$$

Answer: B

D Watch Video Solution

29. Light of wavelength $4000 \AA$ is allowed to fall on a metal surface having work function 2 eV .

The maximum velocity of the emitted electrons is
$\left(h=6.6 \times 10^{-34} J s\right)$
A. $1.35 \times 10^{5} \mathrm{~ms}^{-1}$
B. $2.7 \times 10^{5} \mathrm{~ms}^{-1}$
C. $6.2 \times 10^{5} \mathrm{~ms}^{-1}$
D. $8.1 \times 10^{5} \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

30. A horizontal pipeline carries water in a streamline flow. At a point along the pipe, where the cross- sectional area is $10 \mathrm{~cm}^{2}$, the water
velocity is $1 \mathrm{~ms}^{-1}$ and the pressure is 2000 Pa .

The pressure of water at another point where the cross-sectional area is $5 \mathrm{~cm}^{2}$, is........Pa.
(Density of water $=10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$)
A. 200 Pa
B. 400 Pa
C. 500 Pa
D. 800 Pa

Answer: C
31. A coaxial cylinder made of glass is immersed in a-liquid of surface tension S . The radius of the inner and outer surface of the cylinder are
R_{1} and R_{2} respectively. Height till which liquid will rise is (Density of liquid is ρ)

$$
\begin{aligned}
& \text { A. } \frac{2 S}{R_{2} \rho g} \\
& \text { B. } \frac{2 S}{R_{1} \rho g} \\
& \text { C. } \frac{S}{\left(R_{2}-R_{1}\right) \rho g} \\
& \text { D. } \frac{2 S}{\left(R_{2}-R_{1}\right) \rho g}
\end{aligned}
$$

- Watch Video Solution

32. At what distance from a convex lens of focal length 30 cm an object should be placed so that the size of image be $\frac{1}{4}$ that of object?
A. 30 cm
B. 60 cm
C. 15 cm
D. 90 cm

- Watch Video Solution

33. A thin prism P_{1} with angle 4 degree and made from glass of refractive index 1.54 is combined with another thin prism P_{2} made from glass of refractive index 1.72 to produce dispersion without deviation. The angle of the prism P_{2} is
A. 5.33°
B. 4°
C. 3°

Answer: C

D Watch Video Solution

34. The moment of inertia of a solid cylinder about its axis is given by $(1 / 2) M R^{2}$. If this cylinder rolls without slipping the ratio of its rotational kinetic energy to its translational kinetic energy is -
A. $1: 1$

B. $2: 2$

C. $1: 2$
D. $2: 3$

Answer: C

D Watch Video Solution

35. A force $\vec{F}=\alpha \hat{i}+3 \hat{j}+6 \hat{k}$ is acting at a point $\vec{r}=2 \hat{i}-6 \hat{j}-12 \hat{k}$. The value of α for which angular momentum about origin is conserved is:
A. 0
B. 1
C. -1
D. 2

Answer: C

- Watch Video Solution

36. The inputs to the digital circuit are shown below. The output Y is

A. $A+B+\bar{C}$
B. $(A+B) \bar{C}$
c. $\bar{A}+\bar{B}+\bar{C}$
D. $\bar{A}+\bar{B}+C$

Answer: C

- Watch Video Solution

37. The part of a transistor which is most heavily doped to produce large number of majority carriers is
A. Emitter
B. Base
C. Collector
D. can be any of the above three

Answer: A
38. Power radiated by a black body is P_{0} and the wavelength corresponding to maximum energy
is around λ_{0}, On changing the temperature of the black body, it was observed that the power radiated becames $\frac{256}{81} P_{0}$. The shift in wavelength corresponding to the maximum energy will be

$$
\begin{aligned}
& \text { A. }+\frac{\lambda_{0}}{4} \\
& \text { B. }+\frac{\lambda_{0}}{2} \\
& \text { C. }-\frac{\lambda_{0}}{4} \\
& \text { D. }-\frac{\lambda_{0}}{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

39. SI units, the dimensions of $\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$ is

$$
\text { A. } M^{-1} L^{-4} T^{5} A^{-2}
$$

B. $M^{-1} L^{-4} T^{5} A^{2}$
C. $M^{-1} L^{-2} T^{3} A^{2}$
D. $M^{-1} L^{-4} T^{4} A^{2}$

- Watch Video Solution

40. A beam of light of wavelength 600 nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between the first dark fringes on either side of the central bright fringe is
A. 1.2 cm
B. 1.2 mm
C. 2.4 cm

D. 2.4 mm

Answer: D

D Watch Video Solution

41. A parallel beam of monochromatic light is incident normally on a slit. The diffraction parttern is observed on a screen placed at the focal plane of convex lens. If the slit width is increased, the central maximum of the diffraction pattern will
A. Become broader and fainter
B. Become broader and bright
C. Become narrower and brighter
D. Become narrower and brighter

Answer: D

D Watch Video Solution

42. A way pulse is travelling on a string of linear mass density $6.4 \times 10^{-3} \mathrm{kgm}^{-1}$ under a load of

80 kgf . Calculate the time taken by the pulse to traverse the string, if its length is 0.7 m .

$$
\text { A. } 2 \times 10^{-3} s
$$

B. $3 \times 10^{-3} s$
C. $4 \times 10^{-2} s$
D. $5 \times 10^{-2} s$

Answer: A
43. It takes 2.0 seconds for a sound wave to travel between two fixed points when the day temperature is $10^{\circ} \mathrm{C}$. If the temperature rise to
$30^{\circ} C$ the sound wave travels between the same fixed parts in
A. 1.9 s
B. 2.0 s
C. 2.1 s
D. 2.2 s

- Watch Video Solution

44. The relationship between the force F and position x of body is as shown in figure. The work done in displacing the body in displacing the body from ($x=1 m$ to $x=5 m$) will be

A. 30 J
B. 15 J
C. 25 J
D. 20 J

Answer: B

- Watch Video Solution

45. A particle is projected vertically upwards with a speed of $16 \mathrm{~ms}^{-1}$. After some time, when it again passes through the point of projection,
its speed is found to be $8 m s^{-1}$. It is known that the work done by air resistance is same during upward and downward motion. Then the maximum height attained by the particle is
(take $g=10 \mathrm{~ms}^{-2}$)
A. 8 m
B. 4.8 m
C. 17.6 m
D. 12.8 m

Answer: A

