đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET TEST 102

Physics

1. Which of the following links lines of the H atom spectrum belongs to the Balmer series ?
A. $1025 \AA$
B. $1218 \AA$
C. $4861 \AA$
D. $18751 \AA$

Answer: C

D Watch Video Solution

2. The energy required for transition in a Hydrogen atom from $1^{\text {st }}$ energy level to the $2^{n d}$ energy level is E. Then , which of the
following transitions is possible for the same energy in Helium atom?
A. $2 \rightarrow 3$
B. $2 \rightarrow 4$
C. $1 \rightarrow 2$
D. $1 \rightarrow 3$

Answer: B
(Watch Video Solution
3. A body of mass M at rest explodes into
three pieces, two of which of mass $M / / 4$ each are thrown off in perpendicular directions eith velocities of $3 m / s$ and $4 m / s$ respectively. The third piece will be thrown off with a velocity of
A. $1.5 m s^{-1}$
B. $2.0 \mathrm{~ms}^{-1}$
C. $2.5 m s^{-1}$
D. $3.0 \mathrm{~ms}^{-1}$

Answer: C

- Watch Video Solution

4. A particle of mass m moving in the x direction with speed $2 v$ is hit by another particle of mass $2 m$ moving in they y direction with speed v. If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to :
A. 62%
B. 44%
C. 50%

D. 56%

Answer: D

D Watch Video Solution

5. A body moves along a circular path of radius

10 m and the coefficient of friction is 0.5 . What
should be its angular speed $\left(\in \operatorname{rads}^{-1}\right)$, if is not to slip from the surface ?
(Given, $g=9.8 m s^{-2}$)
A. 5
B. 10
C. 0.1
D. 0.7

Answer: D

D Watch Video Solution

6. A small magnet of dipole moment M is kept on the arm of a deflection magnetometer set in $\tan A$ position at a distance of 0.2 m . If the
deflection is 60°, find the value of

$$
P\left(B_{H}=0.4 \times 10^{-4} T\right)
$$

A. $2.77 \mathrm{~A} \mathrm{~m}^{2}$
B. $8 \mathrm{~A} \mathrm{~m}^{2}$
C. $0.2 \mathrm{~A} \mathrm{~m}^{2}$
D. $0.9 \mathrm{~A} \mathrm{~m}^{2}$

Answer: A
(Watch Video Solution

7. Two wires that are made up of two different

 materials whose specific resistance are in the ratio $2: 3$, length $3: 4$ and area $4: 5$. The ratio of their resistances isA. $6: 5$
B. $6: 8$
C. $5: 8$
D. $1: 2$

Answer: C
8. Eight resistances each of resistance 5Ω are connected in the circuit as shown in figure.

The equivalent resistance between A and B is

A. $\frac{8}{3} \Omega$
B. $\frac{16}{3} \Omega$
C. $\frac{15}{7} \Omega$
D. $\frac{19}{2} \Omega$

Answer: A

D Watch Video Solution

9. Time constant of the given circuit is τ If the battery is replaced by an ac source having
voltage $V=V_{0} \cos \omega t$, power factor or the

A. ωT

$$
\begin{aligned}
& \text { B. } \frac{1}{\sqrt{1+(\omega \tau)^{2}}} \\
& \text { C. } \sqrt{1-(\omega \tau)^{2}}
\end{aligned}
$$

D. None

Answer: B

D Watch Video Solution

10. An ideal transformer converts $220 \mathrm{~V} A C$ to
3.3 kV AC to transmit a power of 4.4 kW . If
primary coil has 600 turns, then alternating
current in secondary coil is
A. $\frac{1}{3} A$
B. $\frac{4}{3} A$
C. $\frac{5}{3} A$
D. $\frac{7}{3} A$

Answer: B

D Watch Video Solution

11. In the given figure a capacitor of plate area

A is charged up to charge q. The mass of each
plate is m_{2} The lower plate is rigidly fixed. Find
the value of m_{1} so that the system remains in
equilibrium -

A. $m_{2}+\frac{q^{2}}{\varepsilon_{0} A g}$
B. m_{2}
C. $\frac{q^{2}}{2 \varepsilon_{0} A g}+m_{2}$
D. $2 m_{2}$

Answer: C

- Watch Video Solution

12. A charge Q is uniformly distributed over
the surface of two conducting concentric spheres of radii R and r (Rgtr). Then, potential at common centre of these spheres is

$$
\begin{aligned}
& \text { A. } \frac{K Q(R+r)}{R r} \\
& \text { B. } \frac{K Q(R+r)}{\left(R^{2}+r^{2}\right)}
\end{aligned}
$$

$$
\text { c. } \frac{K Q}{\sqrt{R^{2}+r^{2}}}
$$

$$
\text { D. } K Q\left(\frac{1}{R}-\frac{1}{r}\right)
$$

Answer: B

D Watch Video Solution

13. A satellite which is geostationary in a particular orbit is taken to another orbit. Its distance from the centre of earth in new orbit is 2 times that of the earlier orbit. The time period in the second orbit is
A. 24 h
B. 48 h
C. $48 \sqrt{2} h$
D. $\frac{48}{\sqrt{2}} h$

Answer: C

D Watch Video Solution
14. If g is the acceleration due to gravity on earth's surface, the gain of the potential energy of an object of mass m raised from the
surface of the earth to a height equal to the radius R of the earth is
A. $2 m g R$
B. $m g R$
C. $\frac{1}{2} m g R$
D. $\frac{1}{4} m g R$

Answer: C
(Watch Video Solution
15. A monatomic gas initially at $17^{\circ} C$ has suddenly compressed adiabatically to oneeighth of its original volume. The temperature after compression is
A. 887 K
B. 36.25 K
C. 2320 K
D. 1160 K

Answer: D

16. Five moles of hydrogen gas are heated from $30^{\circ} C$ to $60^{\circ} C$ at constant pressure. Heat given to the gas is (given $R=2 \mathrm{cal} / \mathrm{mol}$ degrees)
A. 750 cal
B. 630 cal
C. 1050 cal
D. 1470 cal

Answer: C

D Watch Video Solution

17. A cylindrical vessel made of thermally
insulating material is divided into two equal
parts by an insulating and. Movable piston. Both parts contain ideal monoatomic gas. The gas in the left part is supplied heat such that the volume of right part becomes one-eight of its initial volume. Work done by the gas in the
right part is

$$
\begin{aligned}
& \text { A. } \frac{-9}{2} P V \\
& \text { B. } \frac{9}{2} P V \\
& \text { C. }-3 P V \\
& \text { D. } 3 P V
\end{aligned}
$$

Answer: A

- Watch Video Solution

18. A current carrying circular coil is bent so as to convert it into a double loop, both the
loops being concentric and are carrying
current in the same direction. If B is the initial magnetic field at the centre, the final magnetic field at the centre will be
A. zero
B. B
C. 2 B
D. 4 B

Answer: D

D Watch Video Solution

19. A current I is flowing in a conductor shaped
as shown in figure. The radius of the curved
part is r and length of straight portion is very large. Find the magnetic field induction at the
centre 0 .

A. $\frac{\mu_{0} I}{4 \pi R}\left(\frac{3 \pi}{2}+1\right)$
B. $\frac{\mu_{0} I}{4 \pi R}\left(\frac{3 \pi}{2}-1\right)$
C. $\frac{\mu_{0} I}{4 \pi R}\left(\frac{\pi}{2}+1\right)$
D. $\frac{\mu_{0} I}{4 \pi R}\left(\frac{\pi}{2}-1\right)$

Answer: A

Watch Video Solution

20. A car is moving along a straight road with
a uniform acceleration. It passes through two
points P and Q separated by a distance with
velocity $30 \mathrm{~km} / \mathrm{h}$ and $40 \mathrm{~km} / \mathrm{h}$ respectively. The velocity of the car midway between P and Q is
A. $33.3 \mathrm{~km} \mathrm{~h}^{-1}$
B. $20 \sqrt{2} \mathrm{~km} \mathrm{~h}^{-1}$
C. $25 \sqrt{2} \mathrm{~km} \mathrm{~h}^{-1}$

D. $35 \mathrm{~km} \mathrm{~h}^{-1}$

Answer: C

D Watch Video Solution

21. The x and y coordinates of a particle at any
time t are given by $x=2 t+4 t^{2}$ and $y=5 t$, where x and y are in metre and t in second.

The acceleration of the particle at $t=5 \mathrm{~s}$ is

$$
\text { A. } 40 \mathrm{~m} \mathrm{~s}^{-2}
$$

B. $20 \mathrm{~m} \mathrm{~s}^{-2}$
C. $8 \mathrm{~m} \mathrm{~s}^{-2}$
D. Zero

Answer: C

- Watch Video Solution

22. The force required to move a body up a rough inclined plane is double the force required to prevent the body from sliding down the plane. The coefficient of friction
when the angle of inclination of the plane is
60° is.

> A. $\frac{1}{3}$
> B. $\frac{1}{\sqrt{2}}$
> C. $\frac{1}{\sqrt{3}}$
> D. $\frac{1}{2}$

Answer: C
(Watch Video Solution
23. A man weighing 80 kg is standing on a trolley weighting 320 kg . The trolley is resting on frictionless horizontal rails. If the man starts walking on the trolley along the rails at speed $1 \mathrm{~m} / \mathrm{s}$ (w.r.t. to trolley) then after $4 s$ his displacement relative to the ground will be :
A. 5 m
B. 4.8 m
C. 3.2 m
D. 3.0

Answer:

D Watch Video Solution

24. Starting with a sample of pure ${ }^{66} C u, 7 / 8$
of it decays into $Z n$ in 15 minute. The corresponding half-life is:
A. 10 minutes
B. 15 minutes
C. 5 minutes
D. 7.5 minutes

Answer: C

- Watch Video Solution

25. Activity of a radioactive sample decreases
to $(1 / 3)$ rd of its original value in 3 days. Then, in 9 days its activity will become
A. $(1 / 27)$ of the original value
B. $(1 / 9)$ of the original value
C. $(1 / 18)$ of the original value
D. $(1 / 3)$ of the original value

Answer: A

D Watch Video Solution

26. A simple spring has length I and force constant K. It is cut into two springs of lengths l_{1} and l_{2} such that $l_{1}=n l_{2} \quad(\mathrm{n}=$ an integer). The force constant of spring of length l_{1} is

$$
\begin{aligned}
& \text { A. } \frac{k n}{n+1} \\
& \text { B. } \frac{k(n+1)}{n}
\end{aligned}
$$

C. $\frac{k(n-1)}{n}$

$$
\text { D. } \frac{k n}{n-1}
$$

Answer: B

D Watch Video Solution

27. A mass is suspended from a vertica spring which is executing SHM of frequency 5 Hz .

The spring is unstretched at the highest point of oscillation. Maximum speed of the mass is
(take, acceleration due to gravity, $g=10 \mathrm{~m} / \mathrm{s}^{2}$
A. $2 \pi m s^{-1}$
B. $\pi m s^{-1}$
C. $\frac{1}{2 \pi} m s^{-1}$
D. $\frac{1}{\pi} m s^{-1}$

Answer: D
(Watch Video Solution
28. Ultraviolet light of wavelength 300 nn and intensity $1.0 \mathrm{Wm}^{-2}$ falls on the surface of a photosensitive material. If one per cent of the incident photons produce photoelectrons, then the number of photoelectrons emitted per second from an area of $1.0 \mathrm{~cm}^{2}$ of the surface is nearly

$$
\begin{aligned}
& \text { A. } 2.13 \times 10^{11} s^{-1} \\
& \text { B. } 1.5 \times 10^{12} s^{-1} \\
& \text { C. } 3.02 \times 10^{12} s^{-1}
\end{aligned}
$$

D. None of these

Answer: B

D Watch Video Solution

29. when a monochromatic point source of
light is at a distance 0.2 m from a photoelectric cell, the saturation current and cut-off voltage are 12.0 mA and 0.5 V . If the same source is placed 0.4 m away from the
photoelectric cell, then the saturation current and the stopping potential respectively are
A. 4 mA and 1 V
B. 3 mA and 1 V
C. 12 mA nad 0.5 V
D. 3 mA nad 0.5 V

Answer: D

- Watch Video Solution

30. The cylindrical tube of a spray pump has a cross-section of $8 \mathrm{~cm}^{2}$, one end of which has 40
fine holes each of area $10^{-8} \mathrm{~m}^{2}$. If the liquid
flows inside the tube with a speed of $0.15 m \mathrm{~min}^{-1}$, the speed with which the liquid is ejected through the holes is.
A. $50 m s^{-1}$
B. $5 m s^{-1}$
C. $0.05 m s^{-1}$
D. $0.5 m s^{-1}$

Answer: B

D Watch Video Solution

31. A big water drop is formed by the combination of ' n ' small water drops of equal radii. The ratio of the surface energy of ' n ' drops to the surface energy of big drop is
A. $n^{2}: 1$
B. $n: 1$
C. $\sqrt{n}: 1$

D. $\sqrt[3]{n}: 1$

Answer: D

D Watch Video Solution

32. A fish looking up through the water sees
the outside world contained in a circular horizon. If the refractive index of water is $\frac{4}{3}$ and the fish is 12 cm below the surface, the radius of this circle is cm is

$$
\text { A. } \frac{36}{\sqrt{5}}
$$

B. $36 \sqrt{5}$
C. $\frac{36}{\sqrt{7}}$
D. $36 \sqrt{7}$

Answer: C

D Watch Video Solution

33. Two identical thin planoconvex glass lenses
(refractive index 1.5) each having radius of curvature of 20 cm are placed with their convex surfaces in contact at the centre. The
intervening space is filled with oil of refractive
index 1.7 The focal length of the combination
is
A. -20 cm
B. -25 cm
C. -50 cm
D. 50 cm

Answer: C

D Watch Video Solution
34. A smooth uniform rod of length L and mass M has two identical beads of negligible size each of mass m which can slide freely along the rod. Initially the two beads are at the centre of the rod and the system is rotating with an angular velocity ω_{0} about an
axis perpendicular to the rod and passing through the midpoint of the rod. There are no external forces. When the beads reach the ends of the rod, the angular velocity of the

A. $\frac{M \omega_{0}}{M+3 m}$
B. $\frac{M \omega_{0}}{M+6 m}$
c. $\frac{(M+6 m) \omega_{0}}{M}$
D. ω_{0}

Answer: B

- Watch Video Solution

35. A disc of mass M and radius R has a spring of constant k attached to its center, the other end of the spring being fixed to a vertical wall.

If the disk rolls without slipping on a level
floor, how far to the right does the centre of mass move , if Initially the spring was unstretched and the angular speed of the disc
was ω_{0}

A. $R \omega \sqrt{(2 M / 3 k)}$
B. $R \omega \sqrt{(3 M / 2 k)}$
c. $R \omega \sqrt{(M / k)}$
D. $R \omega \sqrt{(M / 2 k)}$

Answer: B
36. p-type semiconductor is
A. Positively charged
B. Negatively charged
C. Neutral
D. None of the given

Answer: C
37. For the expression $P=X+X Y$, how many gates are required for its implementation?
A. 2
B. 1
C. 3
D. None of the above

Answer: D

- Watch Video Solution

38. One mole of ideal gas goes through process $P=\frac{2 V^{2}}{1+V^{2}}$. Then change in temperature of gas when volume changes
from $V=1 m^{2}$ to $2 m^{2}$ is :

$$
\begin{aligned}
& \text { A. }-\frac{4}{5 R} K \\
& \text { B. } \frac{11}{5 R} K \\
& \text { C. }-\frac{5}{2 R} K \\
& \text { D. } 2 \mathrm{~K}
\end{aligned}
$$

Answer: B
39. If the error in measuring the radius of the sphere is 2% and that in measuring its mass is
3%, Then the error in measuring density of materials the sphere is:
A. 5%
B. 7%
C. 9%
D. 11%

- Watch Video Solution

40. In the experiment of diffraction at a single slit, if the slit width is decreased, the width of the central maximum
A. Remains the same
B. Increase
C. Decrease
D. Can be any of these depending on the intensity of the source

Answer: B

D Watch Video Solution

41. Two polaroids are kept crossed to each other. If one of them is rotated an angle 60°, the percentage of incident light now transmitted through the system is
A. 10%
B. 20%
C. 25%

D. 12.5 \%

Answer: D

D Watch Video Solution

42. The ratio of speed of sound in neon to that
in water vapours at any temperature (when molecular weight of neon is
$2.02 \times 10^{-2} \mathrm{kgmol}^{-1}$
A. 1.1
B. 1.7
C. 1.9
D. 1.3

Answer: A

D Watch Video Solution

43. Find beat frequency if the motion of two
particles is given by
$y_{1}=0.25 \sin (310 t)$
$y_{2}=0.25 \sin (316 t)$
A. 3
B. $\frac{3}{\pi}$
C. $\frac{6}{\pi}$
D. 6

Answer: B

- Watch Video Solution

44. A particle moves from position
$r_{1}=(3 \hat{i}+2 \hat{j}-6 \hat{k}) \quad \mathrm{m}$ to position
$r_{2}=(14 \hat{i}+13 \hat{j}+9 \hat{k}) \mathrm{m}$ under the action of
a force $(4 \hat{i}+\hat{j}-3 \hat{k}) \mathrm{N}$, then the work done is
A. 46 J
B. 56 J
C. 86 J
D. 10 J

Answer: D
(Watch Video Solution

45.

A particle of mass 0.1 kg is subjected to a force which varies with distance as shown in figure.

If it starts its journey from rest at $x=0$, its
velocity at $x=12 m$ is
A. $0 m s^{-1}$
B. $40 m s^{-1}$
C. $20 \sqrt{2} m s^{-1}$
D. $20 m s^{-1}$

Answer: B

D Watch Video Solution

