đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET TEST 103

Physics

1. when a hydrogen atom is raised from the ground state to an excited state
A. Potential energy increases and kinetic
energy decreases
B. Kinetic energy increases and potential
energy decreases
C. Both KE and PE increases
D. Both KE and PE decreases

Answer: A

D Watch Video Solution

2. The de-Broglie wavelength of an electron in
the ground state of the hydrogen atom is
A. πr^{2}
B. $2 \pi r$
C. πr
D. $\sqrt{2 \pi r}$

Answer: B
(D) Watch Video Solution
3. A shell of mass m moving with velocity v suddenly breaks into 2 pieces. The part having mass m /4 remains stationary. The velocity of the other shell will be
A. v
B. $2 v$
C. $\frac{3 v}{4}$
D. $\frac{4 v}{3}$

Answer: D
4. A 3 kg ball strikes a heavy rigid wall with a speed of $10 \mathrm{~ms}^{-1}$ at an angle of 60° with the wall. It gets reflected with the same speed at 60° with the wall. If the ball is in contact with the wall for $0.2 s$, the average force exerted on
the ball by the wall is

A. 300 N
B. zero
C. $150 \sqrt{3} N$
D. 150 N

Answer: C

D Watch Video Solution

5. A particle moves in a circular path of radius
$0.5 m$ at a speed that uniformly increases. Find
the angular acceleration of particle if its speed changes from $2.0 m / s$ to $4.0 m / s$ in $4.0 s$
A. $1 \mathrm{rad} \mathrm{s}^{-2}$
B. $2 r a d s^{-2}$
C. $4 r a d s^{-2}$

D. $0 r a d s^{-2}$

Answer: A

D Watch Video Solution

6. The vertical component of earth's magnetic
field at a place is $\sqrt{3}$ times the horizontal
component the value of angle of dip at this
place is
A. 60°
B. 45°
C. 30°
D. 15°

Answer: A

D Watch Video Solution

7. What is the equivalent resistance between A

 and B in the given circuit?
A. $\frac{3}{8} \Omega$
B. $\frac{8}{3} \Omega$
C. 2Ω
D. 4Ω

Answer: B

- Watch Video Solution

8. The metre bridge wire $A B$ shown in the adjoin figure is 100 cm long when $A D=30 \mathrm{~cm}$, no deflection occurs in the galvanometer. The value of R is

A. 6Ω
B. 9Ω
C. 14Ω
D. 15Ω

Answer: C

D Watch Video Solution

9. An oscillator circuit contains an inductor 0.05 H and a capacitor of capacity $80 \mu F$. When the maximum voltage across the capacitor is

the circuit is

A. 4
B. 8
C. 10
D. 16

Answer: B
(Watch Video Solution
10. A square loop, carrying a steady 1 , is placed
in a horizontal plane near a long straight conductor carrying a steady current I, at a distance d from the conductor as shown in

Fig. The loop wil experience

A.A net repulsive force away from the conductor
B. A net torque acting upward
perpendicular to the horizontal plane
C. a net torque acting downward normal to
the horizontal plane
D. a net attractive force toward the
conductor

Answer: D

D Watch Video Solution
11. A conductor with a cavity is charged positively and its surface charge density is σ. If

E and V represent the electric field and potential, then inside the cavity
A. $\mathrm{E}=0$ and $\mathrm{V}=0$
B. $\mathrm{E}=0$ and σ - constant
C. $\mathrm{V}=0$ and $\sigma=$ constant
D. $E=0$ and $V=$ constant

Answer: D

12. The effective capacitance between A and B of an infinite chain of capacitors joined as shown in the figure

A. $(\sqrt{3}-1) \mu F$
B. $\frac{(\sqrt{5}-1)}{2} \mu F$
C. $(\sqrt{5}-1) \mu F$

D. $1 \mu F$

Answer: B

D Watch Video Solution

13. A man weighs ' W ' on the surface of the earth and his weight at a height ' R ' from
surface of the earth is (R is Radius of the earth)
A. W
B. $\frac{W}{2}$
C. $\frac{W}{4}$
D. $\frac{W}{8}$

Answer: C

D Watch Video Solution

14. The time period of a satellite of earth is 5
hours. If the separation between the centre of earth and the satellite is increased to 4 times
the previous value, the new time period will become-
A. 40 hours
B. 20 hours
C. 10 hours
D. 80 hours

Answer: A

D Watch Video Solution
15. Two rods of the same length and diameter,
having thermal conductivities K_{1} and K_{2}, are
joined in parallel. The equivalent thermal conductivity to the combination k is
A. $\frac{K_{1} K_{2}}{K_{1}+K_{2}}$
B. $K_{1}+K_{2}$
C. $\frac{K_{1}+K_{2}}{2}$
D. $\sqrt{K_{1} K_{2}}$

Answer: C

16. Among the following the correct statement is
A. Internal energy of a gas depends only on
the state of the gas.
B. In an isothermal process change in
internal energy in maximum
C. Area under pressure, volume graph
equals heat supplied in any process.

D. Work done is state dependent but not

 path dependent.
Answer: A

D Watch Video Solution

17. An ideal monoatomic gas is taken round
the cycle ABCDA as shown in the P-V diagram.

The work done during the cycle is

A. $\frac{1}{2} P V$
B. $P V$
C. $2 P V$
D. $4 P V$

Answer: B

- Watch Video Solution

18. Which of the following particles will describe the smallest circle when projected with the same velocity perpendicular to a magnetic field?
A. Proton
B. He^{+}
C. $L i^{+}$
D. Electron

Answer: D

- Watch Video Solution

19. The length of a magnet is large compared
to its width and breadth. The time period of
its oscillation in a vibration magnetometer is
$2 s$. The magnet is cut along its length into
three equal parts and these parts are then placed on each other with their like poles together. The time period of this combination will be
A. $\frac{2}{\sqrt{3}} S$
B. $\frac{2}{3} S$
C. $2 \sqrt{3} S$
D. $2 S$

Answer: B

D Watch Video Solution

20. Which of the following options is correct
for the object having a straight line motion
represented by the following graph?

A. The object moves with constantly
increasing velocity from O to A and then
its moves with constant velocity
B. Velocity of the object increases
uniformly
C. Average velocity is zero
D. The graph shown is impossible

Answer: C

D Watch Video Solution

21. The equation of motion of a projectile is
$y=12 x-\frac{3}{4} x^{2}$. The horizontal component of
velocity is $3 m s^{-1}$. What is the range of the

projectile?

A. $18 m$
B. $16 m$
C. $12 m$
D. 21.6 m

Answer: B
(Watch Video Solution
22. A block of mass 2 kg rests on an inclined
plane which makes an angle of 30° with the
horizontal. The coefficient of friction between
the block and the surface is $\sqrt{3 / 2}$. (i) What
force should be applied on the block so that it
moves down without any acceleration ?
What force should be applied on the block so
that it moves up without any acceleration ?
(iii) Calculate the ratio of the powers in the above two cases if the block moves with uniform speed in both the cases.
A. 11.21
B. 4.5
C. 6.7
D. 30.14

Answer: A

D Watch Video Solution

23. A bullet of mass 0.1 kg is fired with a speed
of $100 \mathrm{~m} / \mathrm{sec}$, the mass of gun is 50 kg . The
velocity of recoil is
A. $0.2 m s^{-1}$
B. $0.1 m s^{-1}$
C. $0.5 m s^{-1}$
D. $0.05 \mathrm{~ms}^{-1}$

Answer: A

D Watch Video Solution
24. A sample of radioactive element has a mass
of $10 g$ at an instant $t=0$. The approximate
mass of this element in the sample after two

mean lives is

A. $1.35 g$
B. $2.50 g$
C. $3.70 g$
D. $6.30 g$

Answer: A
(Watch Video Solution
25. What is the probability of a radioactive nucleus to survive one mean life?

$$
\begin{aligned}
& \text { A. } \frac{1}{e} \\
& \text { B. } \frac{1}{e+1} \\
& \text { C. } 1-\frac{1}{e} \\
& \text { D. } 1+\frac{1}{e}
\end{aligned}
$$

Answer: A

D Watch Video Solution
26. A spring of force constant k is cut into two pieces such that one piece is double the length of the other. Then the long piece will have a force constant of :
A. $2 k / 3$
B. $3 k / 2$
C. $3 k$
D. $6 k$

Answer: B
27. The average acceleration of a particle performing SHM over one complete oscillation
is

> A. $\frac{\omega^{2} A}{2}$
> B. $\frac{\omega^{2} t}{\sqrt{2}}$
> C. zero
D. $A \omega^{2}$

Answer: C

28. Light of wavelength 500 nm is incident on a

 metal with work function 2.28 eV . The de Broglie wavelength of the emitted electron isA. $<2.8 \times 10^{-9} \mathrm{~m}$
B. $\geq 2.8 \times 10^{-9} \mathrm{~m}$
C. $\leq 2.8 \times 10^{-12} m$
D. $<2.8 \times 10^{-10} \mathrm{~m}$

Answer: B
29. When a piece of metal is illuminated by a monochromatic light of wavelength λ, then stopping potential is $3 V_{s}$. When the same surface is illuminated by the light of wavelength 2λ, then stopping potential becomes V_{s}. The value of threshold wavelength for photoelectric emission will be A. 4λ
B. 8λ
C. $\frac{4}{3} \lambda$
D. 6λ

Answer: A

D Watch Video Solution

30. Two wires having same length and material are stretched by same force. Their diameters
are in the ratio 1:3. The ratio of strain energy per unit volume for these two wires (smaller to larger diameter) when stretched is
A. 3:1
B. 9:1
C. 27: 1
D. $81: 1$

Answer: D

- Watch Video Solution

31. Two water pipes of diameters 2 cm and 4 cm are connected with the main supply line.

The velocity of flow of water in the pipe of 2
cm
A. 4 times that in the other pipe
B. $\frac{1}{4}$ times that in the other pipe
C. 2 times that in the other pipe
D. $\frac{1}{2}$ times that in the other pipe

Answer: A

D Watch Video Solution

32. A plane mirror of circular shape with radius $r=20 \mathrm{~cm}$ is fixed to the ceiling .A bulb is to be placed on the axis of the mirror.A circular area of radius $R=1 m$ on the floor is to be
illuminated after reflection of light from the mirror. The height of the room is $3 m$ What is maximum distance from the center of the mirror and the bulb so that the required area is illuminated?
A. 75 cm
B. 70 cm

C. 80 cm

D. 100 cm

Answer: A

D Watch Video Solution

33. A double convex thin lens made of the refractive index 1.6 has radii of curvature 15 cm each. The focal length of this lens when immersed in a fluid of refractive index 1.63, is
A. 25 cm
B. 125 cm
C. 250 cm
D. -407.5 cm

Answer: D

D Watch Video Solution

34. A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity ω, Two objects, each of mass
m , are attached gently to the opposite ends of a diameter of the ring. The wheel now rotates with an angular velocity $\omega=$

$$
\begin{aligned}
& \text { A. } \frac{\omega M}{(M+m)} \\
& \text { B. } \frac{\omega(M-2 m)}{(M+2 m)} \\
& \text { C. } \frac{\omega M}{(M+2 m)} \\
& \text { D. } \frac{\omega(M+2 m)}{m}
\end{aligned}
$$

Answer: C

D Watch Video Solution

35. A solid cylinder of mass M and radius R rolls from rest down a plane inclined at an angle θ to the horizontal. The velocity of the centre of mass of the cylinder after it has rolled down a distance d is :
A. $\sqrt{\frac{2}{3} g d \tan \theta}$
B. $\sqrt{g d \tan \theta}$
C. $\sqrt{\frac{3}{4} g d \sin \theta}$
D. $\sqrt{\frac{4}{3} g d \sin \theta}$

Answer: D

36. When a p -n junction diode is reverse biased
A. Flow of a minority charge carrier from pside of n - side
B. Flow of a majority charge carrier from n side to p - side
C. Flow of a majority charge carrier from pside to n - side
D. Flow to electrons from n - side to p - side

Answer: A

D Watch Video Solution

37. The combination of gates shown in the
figure below produces

A. NOR gate

B. OR gate

C. AND gate
D. XOR gate

Answer: B

D Watch Video Solution

38. By what percentage should the pressure of
a given mass of a gas be increased so as to
decrease its volume by 10% at a constant temperature?
A. 8.1%
B. 9.1%
C. 10.1%
D. 11.1%

Answer: D

D Watch Video Solution

39. The percentage errors in quantities P, Q, R
and S are $0.5 \%, 1 \%, 3 \%$ and 1.5% respectively in
the measurement of a physical quantity
$A=\frac{P^{3} Q^{2}}{\sqrt{R} S}$.
The maximum percentage error in the value of
A will be :
A. 6.5%
B. 7.5%
C. 6.0%
D. 8.5%

Answer: A
40. During scattering of light, the amount of scattering is inversely proportional to of wavelength of light
A. Square
B. Fourth power
C. Half
D. Cube

Answer: B
41. Yong's double-slit experiment is carried out by using green, red and blue light, one color at a time. The fringe widths recorded are β_{G}, β_{R} and β_{B}, respectively. Then
A. $\beta_{G}>\beta_{B}>\beta_{R}$
B. $\beta_{B}>\beta_{G}>\beta_{R}$
C. $\beta_{R}>\beta_{B}>\beta_{G}$
D. $\beta_{R}>\beta_{G}>\beta_{B}$

Answer: D

42. A source emits a sound of frequency of 400 Hz , but the listener hears it to be 390 Hz .

Then
A. The listener is moving towards the
source
B. The source is moving towards the
listener
C. The listener is moving away from the

D. The listener has a defective ear

Answer: C

- Watch Video Solution

43. The fundamental frequency of an air column in a pipe closed at one end is 100 Hz . If
the same pipe is open at both the ends, the frequencies produced in Hz are
A. $100,200,300,400, \ldots$.
B. $100,300,500,700, \ldots$.
C. $200,300,400,500, \ldots$.
D. $200,400,600,800, \ldots$

Answer: D

D Watch Video Solution

44. A particle moves along the X-axis from $x=0$
to $x=5 \mathrm{~m}$ under the influence of a force given
by $F=7-2 x+3 x^{2}$. Find the work done in
the process.
A. 70 J
B. 270 J
C. 35 J
D. 135 J

Answer: D

D Watch Video Solution

45. A spring of force constant $800 \mathrm{~N} / \mathrm{m}$ has an extension of 5 cm . The work done in extending
it from 5 cm to 15 cm is
A. 16 J
B. 8 J
C. 32 J
D. 24 J

Answer: B

- Watch Video Solution

