©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET TEST 112

Physics

1. Magnetic moment due to the motion of the
electron in $n^{t h}$ energy state of hydrogen atom
is proportional to :
A. n
B. n_{0}
C. n^{5}
D. n^{3}

Answer: A

D Watch Video Solution

2. As par Bohr model, the minimum energy (in
$e V)$ required to remove an electron from the
ground state of doubly ionized $L i$ atom $(Z=3)$ is
A. 1.51
B. 13.6
C. 40.8
D. 122.4

Answer: D

D Watch Video Solution
3. A uniform solid cylinder of mass $2 k g$ and radius $0.2 m$ is released from rest at the top of
a semicircular track of radius 0.7 m cut in a block of mass $M=3 \mathrm{~kg}$ as shown in Fig. The block is resting on a smooth horizontal
surface and the cylinder rolls down without slipping. Based on the above information, answer the following questions:

Answer: B

D Watch Video Solution

4. When two bodies collide elastically, the force of interaction between them is
A. Conservative
B. Non -conservative
C. Either conservative or non - conservativ
D. zero

Answer: A

D Watch Video Solution

5. A solid body rotates about a stationary axis
accordig to the law $\theta=6 t-2 t^{3}$. Here θ, is in
radian and t in seconds. Find
(a). The mean values of thhe angular velocity and angular acceleration averaged over the
time interval between $t=0$ and the complete stop.
(b). The angular acceleration at the moment
when the body stops.

Hint: if $y=y(t)$. then mean/average value of y
between t_{1} and t_{2} is $<y \geq \frac{\int_{t_{1}}^{t_{2}} y(t) d t}{t_{2}-t_{1}}$
A. $1 r a d s^{-1}$
B. $2 r a d s^{-1}$
C. $3 \mathrm{rad} \mathrm{s}^{-1}$
D. $4 r a d s^{-1}$

Answer: D

6. x_{1} and x_{2} are susceptibility of a Paramagnetic material at temperatures
T_{1}, K and $T_{2} K$ respectively, then
A. $x_{1} T_{1}=x_{2} T_{2}$
B. $x_{1} T_{2}=x_{2} T_{1}$
C. $x_{1} T_{2}=x_{2} T_{1}$
D. $x_{1} \sqrt{T_{1}}=x_{2} \sqrt{T_{1}}$

Answer: B
7. When a Daniel cell is connected in the secondary circuit of a potentiometer, the balancing length is found to be 540 cm . If the balancing length becomes 500 cm . When the cell is short-circuited with 1Ω, the internal resistance of the cell is
A. 0.08Ω
B. 0.04Ω
C. 1.08Ω
D. 1.45Ω

Answer: A

D Watch Video Solution

8. Express which of the following set ups can be used to verify ohm's law?

Answer: B

D Watch Video Solution
9. A current carrying coil is subjected to a uniform magnetic field. The coil will orient so
that its plane become
A. Inclined at 45° to the magnetic field
B. Inclined at any arbitrary angle to the
magnetic field
C. Parallel to the magnetic field
D. Perpendicular to the magnetic field

Answer: D

D Watch Video Solution

10. A rectangular wire loop with length a and
width b lies in the $x y$-plane as shown. Within
the loop, there is a time dependent magnetic
field given by
$\vec{B}=c[(x \cos \omega t) \hat{i}+(y \sin \omega t) \hat{k}]$. Here , c and ω are constants. The magnitude of emf
induced in the loop as function of time is

\boldsymbol{a}
A. $\left|\frac{a b^{2} c}{2} \omega \cos \omega t\right|$
B. $\left|a b^{2} c \omega \cos \omega t\right|$
C. $\left|\frac{a b^{2} c}{2} \omega \sin \omega t\right|$
D. None of the options

- Watch Video Solution

11. Four point charges $-Q,-q, 2 q$ and $2 Q$ are placed, one at each corner of the square.

The relation between Q and q for which the potential at the centre of the square is zero is

$$
\begin{aligned}
& \text { А. } Q=-q \\
& \text { B. } Q=-\frac{1}{q} \\
& \text { С. } Q=q
\end{aligned}
$$

D. $Q=\frac{1}{q}$

Answer: A

D Watch Video Solution

12. Two capacitors of capacitance C are connected in series. If one of them is filled with dielectric substance K , what is the effective capacitance?
A. $\frac{K C}{(1+K)}$
B. $C(K+1)$
C. $\frac{2 K C}{(1+K)}$
D. None of these

Answer: A

D Watch Video Solution

13. Calculate the binding energy of the earthsum system. Mass of the earth $=6 \times 10^{24} \mathrm{~kg}$
, mass of the sun $=2 \times 10^{30} \mathrm{~kg}$, distance
between the earth and the sun $=1.5 \times 10^{11}$
and gravitational constant $=6.6 \times 10^{-11}$ $N m^{2} k g^{2}$
A. $8.8 \times 10^{10} J$
B. $8.8 \times 10^{3} J$
C. $5.2 \times 10^{33} \mathrm{~J}$
D. $2.6 \times 10^{33} \mathrm{~J}$

Answer: D
(Watch Video Solution
14. A stationary object is released from a point
P a distance $3 R$ from the centre of the moon
which has radius R and mass M. which one of
the following expressions gives the speed of the object on hitting the moon?
A. $\left(\frac{2 G M}{3 R}\right)^{\frac{1}{2}}$
B. $\left(\frac{4 G M}{3 R}\right)^{\frac{1}{2}}$
C. $\left(\frac{2 G M}{R}\right)^{\frac{1}{2}}$
D. $\left(\frac{G M}{R}\right)^{\frac{1}{2}}$

Answer: B

D Watch Video Solution

15. A bucket full of hot water cools from $75^{\circ} C$
to $70^{\circ} \mathrm{C}$ in time T_{1}, from $70^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in
time T_{2} and from $65^{\circ} C$ to $60^{\circ} C$ in time T_{3},
then
A. $T_{1}=T_{2}=T_{3}$
B. $T_{1}>T_{2}>T_{3}$
C. $T_{1}<T_{2}<T_{3}$

$$
\text { D. } T_{1}>T_{2}<T_{3}
$$

Answer: C

D Watch Video Solution

16. A vessel containing 1 g of oxygen at a pressure of 10 atm a temperature of $47^{\circ} \mathrm{C}$. It
is found that because of a leak, the pressure drops to $5 / 8 t h$ of its original value and the temperature falls to $27^{\circ} \mathrm{C}$. Find the volume of
the vessel and the mass of oxygen that is leaked out.

$$
\begin{aligned}
& \text { A. } \frac{1}{3} g \\
& \text { B. } \frac{1}{48} g \\
& \text { C. } 1 g \\
& \text { D. } \frac{2}{3} g
\end{aligned}
$$

Answer: A

- Watch Video Solution

17. In Carnot engine, efficiency is 40% at hot reservoir temperature T. For efficiency 50%, what will be the temperature of hot reservoir?
A. $\frac{2 T}{5}$
B. $6 T$
C. $\frac{6 T}{5}$
D. $\frac{T}{5}$

Answer: C

- Watch Video Solution

18. A conducting loop (as shown) has total resistance R. A uniform magnetic field $B=\gamma t$ is applied perpendicular to plane of the loop where γ is constant and t is time. The induced
current flowing through loop is

> A. $\frac{\left(b^{2}+a^{2}\right) \gamma t}{R}$
> B. $\frac{\left(b^{2}-a^{2}\right) \gamma}{R}$
> C. $\frac{\left(b^{-a} \wedge 2\right) \gamma t}{R}$
> D. $\frac{\left(b^{2}+a^{2}\right) \gamma}{R}$

Answer: B

D Watch Video Solution

19. An electron and a proton have equal kinetic energies. They enter in a magnetic field
perpendicularly, Then
A. Both will follow a circular path with same radius
B. Both will follow a helical path
C. Both will follow a parabolic path
D. All of statements are false

Answer: D

D Watch Video Solution
20. The motion of a particle along a straight
line is described by equation
$x=8+12 t-t^{3}$ where x is in metre and t in
second. The retardation of the particle when
its velocity becomes zero is.

$$
\text { A. } 24 m s^{-2}
$$

B. Zero
C. $6 m s^{-2}$
D. $12 m s^{-2}$

Answer: D

- Watch Video Solution

21. A particle of mass m is projected from the ground with initial linear momentum p (magnitude) such that to have maximum possible range, its minimum kinetic energy will be
A. $\frac{p^{2}}{2 m}$
B. $\frac{p^{2}}{4 m}$
C. $\frac{p^{2}}{m}$
D. $\frac{p^{2}}{3 m}$

Answer: B

- Watch Video Solution

22. While waiting in a car at a signal, an 80 kg man and his car are suddenly accelerated to a
speed of $5 \mathrm{~ms}^{-1}$ due to a rear-end collision by another vehicle. If the time of impact is 0.4 s ,
the average force on the man is
A. 100 N

B. 200 N

C. 500 N
D. 1000 N

Answer: D

D Watch Video Solution

23. The minimum force required to move a
body up on an inclined plane is three times
the minimum force required to prevent it from
sliding down the plane.If the coefficient of
friction between the body and the inclined
plane is $\frac{1}{2 \sqrt{3}}$ the angle of the inclined plane is
A. 60°
B. 45°
C. 30°
D. 15°

Answer: C

- Watch Video Solution

24. A sample contains $10^{-2} \mathrm{~kg}$ each of two substances A and B with half lives 4 sec and 8 sec respectively. Their atomic weights are in the ratio $1: 2$. Find the amounts of A and B after an interval of 16 seconds.
A.

$$
A=0.625 \times 10^{-4} \mathrm{~kg}, B=0.25 \times 10^{-3} \mathrm{~kg}
$$

B.

$$
\begin{aligned}
& \quad A=0.25 \times 10^{-3} \mathrm{~kg}, B=0.625 \times 10^{-4} \mathrm{~kg} \\
& \text { C. } A=2.5 \times 10^{-3} \mathrm{~kg}, B=6.25 \times 10^{-4} \mathrm{~kg}
\end{aligned}
$$

D. $A=6.25 \times 10^{-3} \mathrm{~kg}, B=2.5 \times 10^{-3} \mathrm{~kg}$

Answer: D

- Watch Video Solution

25. A neutron collides head-on and elasticity
with an atom of mass number A, which is initially at rest. The fraction of kinetic energy retained by neutron is

$$
\text { A. }\left(\frac{A}{A+1}\right)^{2} E
$$

> B. $\frac{A}{(A+1)^{2}} E$
> C. $\left(\frac{A-1}{A+1}\right)^{2} E$
> D. $\frac{(A-1)}{(A+1)^{2}} E$

Answer: C

- Watch Video Solution

26. Two point masses of 3.0 kg and 1.0 kg are attached to opposite ends of a horizontal spring whose spring constant is $300 \mathrm{Nm}^{-1}$ as shown in the figure. The natural vibration
frequency of the system is of the order of :

$\mathrm{K}=300 \mathrm{Nm}^{-1}$ 1 kg WWW以~W- 3 kg

A. 4 Hz
B. 3 Hz
C. 2 Hz
D. 1 Hz

Answer: B

D Watch Video Solution
27. A simple harmonic motion is represented
by $x(t)=\sin ^{2} \omega t-2 \cos ^{2} \omega t$. The angular frequency of oscillation is given by
A. ω
B. 2ω
C. 4ω
D. $\frac{\omega}{2}$

Answer: B
28. About 5% of the power of a 100 W light bulb is converted to visible radiation. What is
the average intensity of visible radiation
(a) at a distance of $1 m$ from the bulb?
(b) at a distance of $10 m$?

Assume that the radiation is emitted isotropically and neglect reflection.

$$
\begin{aligned}
& \text { A. } 4 \times 10^{-3} W m^{-2} \\
& \text { B. } 5 \times 10^{-3} W m^{-2} \\
& \text { C. } 6 \times 10^{-3} W m^{-2}
\end{aligned}
$$

$$
\text { D. } 7 \times 10^{-3} W m^{-2}
$$

Answer: A

- Watch Video Solution

29. A light beam consists of two types of photons. In one type, each photon has the energy 2 eV and in another type, each photon has energy 3 eV . The light beam is incident on a photoelectric material of work function 1 eV .

The maximum kinetic enregy of emitted photoelectron is
A. 2 eV
B. 3 eV
C. 4 eV
D. 1 eV

Answer: A
(Watch Video Solution
30. In each heart beat, a heart pumps 80 ml blood at an average pressure of 100 ml of Hg .

What will be the power output of the herat?
(Assume 60 heart beat per minute
A. 1 W
B. 2.75 W
C. 1.06 W
D. 0.5 W

Answer: C
31. If two wires of same length I and are of the cross-section A with young modulus Y and $2 Y$ connect in series and one end is fixed on roof and another end with mass m makes simple harmonic motion, then the time period is
A. $2 \pi \sqrt{\frac{m l}{Y A}}$
B. $2 \pi \sqrt{\frac{m l}{3 Y A}}$
C. $2 \pi \sqrt{\frac{3 m l}{2 Y A}}$
D. $2 \pi \sqrt{\frac{m l}{2 Y A}}$

Answer: C

- View Text Solution

32. The correct curve between refractive index μ and wavelength λ will be

A.

C.

Answer: D

- Watch Video Solution

33. When the angle of incidence on a material
is 60°, the reflected light is completely polarised. The velocity of the refracted ray inside the materials is (in $\mathrm{m} / / \sec ^{\wedge}(-1)$)
A. $3 \times 10^{8} m s^{-1}$
B. $\sqrt{3} \times 10^{8} m s^{-1}$

$$
\begin{aligned}
& \text { C. } \frac{3}{\sqrt{2}} \times 10^{8} \mathrm{~ms}^{-1} \\
& \text { D. } \frac{1}{3} \times 10^{8} \mathrm{~ms}^{-1}
\end{aligned}
$$

Answer: B
34. For a circular cardboard of uniform thickness and mass M, a square disc of the maximum possible are is cut. If the moment of inertia of the square with the moment of inertial of the square with the axis of rotation at the centre and perpendicular to the plane of the disc is $\frac{M a^{2}}{6}$, the radius of the circular cardboard is
A. $\sqrt{2} a$
B. $\frac{a}{\sqrt{2}}$
C. $2 a$
D. $2 \sqrt{2} a$

Answer: B

D Watch Video Solution

35. Consider the following diagram. In which direction, the motion of the spool of thread
(acted upon by three forces shown) kept over a perfectly rough horizontal surface will take
place?

A. Right side
B. Left side
C. The spool of thread remains in the state
of rest
D. Information is insufficient

Answer: B

- Watch Video Solution

36. The V-I characteristic of a diode is shown in
the figure. The ratio of forward to reverse bias
resistance is

A. 10
B. 10^{-6}
C. 10^{6}
D. 100

Answer: B

D Watch Video Solution

37. A common emitter amplifier has a voltage gain of 50 , an input impedance of 100Ω and an
output impedance of 200Ω. The power gain of the amplifier is :-
A. 500
B. 1000
C. 1250
D. 100

Answer: C
(Watch Video Solution
38. At constant temperature if the pressure of an ideal gas is increased by 10% then its volume must decrease by
A. 0.0909
B. 0.1
C. 0.05
D. 0.2

Answer: A

D Watch Video Solution
39. The resistance $R=\frac{V}{I}$, where
$V=(100 \pm 5.0) V$ and $I=(10 \pm 0.2) A$. Find
the percentage error in R.
A. 0.052
B. 0.048
C. 0.07
D. 0.03

Answer: C

- Watch Video Solution

40. In Young's double-slit experiment, if yellow
light is replaced by blue light, the interference
fringes become
A. Darker
B. Brighter
C. Wider
D. Narrower

Answer: D

D Watch Video Solution
41. A parallel beam of light of wavelength
$4000 \AA$ passes through a slit of width
$5 \times 10^{-3} \mathrm{~m}$. The angular spread of the central maxima in the diffraction pattern is
A. $1.6 \times 10^{-3} \mathrm{rad}$
B. $1.6 \times 10^{-4} \mathrm{rad}$
C. $3.2 \times 10^{-3} \mathrm{rad}$
D. $3.2 \times 10^{-4} \mathrm{rad}$

Answer: B
42. If in a resonance tube, oil of density higher
than that of water is used, then the resonance frequency would
A. Increase
B. Decrease
C. Slightly increase
D. Remain same
43. Which frequency produces a sound that can be heard by a person?
A. 100 kHz
B. 40 kHz
C. 2 kHz
D. 30 kHz

Answer: C

- Watch Video Solution

44. A simple pendulum is released from A as
shown. If m and 1 represent the mass of the bob and length of the pendulum, the gain kinetic energy at B is A
A. $\frac{m g l}{2}$
B. $\frac{m g l}{\sqrt{2}}$
C. $\frac{\sqrt{3}}{2} m g l$
D. $\frac{2}{\sqrt{3}} m g l$

Answer: C

D Watch Video Solution

45. An engine can pull four coaches at a maximum speed of $20 \mathrm{~ms}^{-1}$. The mass of the engine is twice the mass of every coach.

Assuming resistive forces to be proportional to the weight, approximate maximum speeds of the engine, when it pulls 12 and 6 coaches, are
A. $8.5 m s^{-1}$ and $15 m s^{-1}$ respectively
B. $6.5 m s^{-1}$ and $8 m s^{-1}$ respectively
C. $8.5 m s^{-1}$ and $13 m s^{-1}$ respectively
D. $10.5 \mathrm{~ms}^{-1}$ and $15 \mathrm{~ms}^{-1}$ respectively

Answer: A

