đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET TEST 64

Physics
1.1 mg radium has 2.68×10^{18} atoms. Its half-
life is 1620 years. How many radium atoms will
disintegrate from 1 mg of pure radium in 3240 years?

A. 2.01×10^{9}
B. 2.01×10^{8}
C. 1.01×10^{9}
D. 1.01×10^{8}

Answer: B
(Watch Video Solution
2. Electron in hydrogen atom first jumps from
third excited state to second excited state and
then form second excited state to first excited
state. The ratio of wavelength $\lambda_{1}: \lambda_{2}$ emitted
in two cases is

$$
\begin{aligned}
& \text { A. } \frac{7}{5} \\
& \text { B. } \frac{27}{20} \\
& \text { C. } \frac{27}{5} \\
& \text { D. } \frac{20}{7}
\end{aligned}
$$

- Watch Video Solution

3. Two blocks of msses 10 kg and 30 kg are placed along a vertical line. The first block is raised through a height of 7 cm . By what distance should the second mass be moved to raise the centre of mass by 1 cm ?
A. 1 cm up
B. 1 cm down
C. 2 cm down

D. 2 cm up

Answer: B

D Watch Video Solution

4. A body of mass m_{1} moving with an unknown velocity of $v_{1} \hat{i}$ undergoes a collinear collision with a body of mass m_{2} moving with
a velocity $v_{2} \hat{i}$. After collision, m_{1} and m_{2} move with velocities of $v_{3} \hat{i}$ and $v_{4} \hat{i}$
respectively. If $m_{2}=0.5 m_{1}$ and $v_{3}=0.5 v_{1}$
then v_{1} is:

$$
\begin{aligned}
& \text { A. } v_{4}-\frac{v_{2}}{4} \\
& \text { B. } v_{4}-\frac{v_{2}}{2} \\
& \text { C. } v_{4}+v_{2} \\
& \text { D. } v_{4}-v_{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

5. The speed of a particle moving in a circle of radius $r=2 m$ varies witht time t as $v=t^{2}$, where t is in second and v in m / s. Find the radial, tangential and net acceleration at $t=2 s$.
A. $\sqrt{80} m s^{-2}$
B. $\sqrt{90} m s^{-2}$
C. $\sqrt{120} m s^{-2}$
D. $\sqrt{70} m s^{-2}$

Answer: A
6. An electric fan has blades of length 30 cm as measured from the axis of rotation. If the fan
is rotating at 1200 rpm , find the acceleration of a point on the tip of a blade.
A. $1600 \mathrm{~ms}^{-2}$
B. $4740 \mathrm{~ms}^{-2}$
C. $2370 m s^{-2}$
D. $5055 \mathrm{~ms}^{-2}$

Answer: B

- Watch Video Solution

7. In the circuit diagram shown in Figure, the potentials of the points B, C and D are
respectively -

A. $12 \mathrm{~V}, 10 \mathrm{~V}, 6 \mathrm{~V}$
B. 11V, 9V, 6V
C. 11V, 9V, 0V
D. $12 \mathrm{~V}, 10 \mathrm{~V}, 0 \mathrm{~V}$

Answer: B

- Watch Video Solution

8. In the circuit shown in the figure, V must be

A. 50 V

B. 100 V

C. 75 V
D. 25 V

Answer: B

D Watch Video Solution

9. If the current through an inductor of 2 H is

given by $I=t \sin t A$, then the voltage across
the inductor is
A. $\cos t+t \sin t$
B. $2 t \cos t+2 \sin t$
C. $t \cos t+\sin t$
D. $2 t \sin t+2 \cos t$

Answer: B

D Watch Video Solution

10. A wire is bent to form a semicircle of the
radius a. The wire rotates about its one end with angular velocity ω. Axis of rotation is
perpendicular to the plane of the semicircle .

In the space, a uniform magnetic field of induction B exists along the aixs of rotation as
shown in the figure. Then -

A. The potential difference between P and
Q is equal to $2 B \omega a^{2}$

B. Potential difference between P and Q is

equal to $2 \pi^{2} B \omega a^{2}$
C. P is at higher than Q
D. None of these

Answer: A

D Watch Video Solution
11. Three point charges of
$+2 q,+2 q$ and $-4 q$ are placed at the corners A, B and C of an equilateral triangle
$A B C$ of side x. The magnitude of the electric dipole moment of this system is
A. 2 qx
B. $3 \sqrt{2} q x$
C. 3 qx
D. $2 \sqrt{3} q x$

Answer: D

D Watch Video Solution
12. Which of the following is true about linear isotropic dielectric ?
A. Induced dipole moment of the linear isotropic dielectric is opposite to the direction of external electric field and proportional to the field strength
B. Induced dipole moment of the linear isotropic dielectric is in the direction of
the field and proportional to the field
strength
C. Induced dipole moment of the linear
isotropic dielectric is perpendicular to
the direction of external field and proportional to the field strength
D. Induced dipole moment of the linear isotropic dielectric is independent to the
direction of external field and the field
strength

Answer: B

D Watch Video Solution

13. A planet revolves around the sun in an elliptical. The linear speed of the planet will
be maximum at

A. D
B. B
C. A
D. C

Answer: C

- Watch Video Solution

14. The radii of two planets are R_{1} and R_{2} ans their densities are ρ_{1} and ρ_{2} respectively.

If g_{1} and g_{2} represent surfaces, then $\frac{g_{1}}{g_{2}}$ is
A. $\frac{\rho_{1} R_{2}^{2}}{\rho_{1} R_{1}^{2}}$
B. $\frac{\rho_{1} R_{2}^{1}}{\rho_{1} R_{2}^{2}}$
C. $\frac{\rho_{2} R_{1}}{\rho_{1} R_{2}}$
D. $\frac{\rho_{1} R_{1}}{\rho_{2} R_{2}}$

Answer: D

D Watch Video Solution

15. If 150 J of energy is incident on area $2 m^{2}$. If
$Q_{r}=15 J$, coefficient of absorption is 0.6 , then amount of energy transmitted is
A. 50 J
B. 45 J
C. 40 J
D. 30 J

Answer: B

D Watch Video Solution

16. A thermodynamic system is taken through
the cycle $A B C D$ as shown in the figure. Heat
rejected by the gas during the cycle is

A. 2 PV
B. 4PV
C. $\frac{1}{2} P V$
D. PV

Answer: A

D Watch Video Solution

17. The cofficient of performance of a refrigerator is 5 . If the temperature inside
freezer is $-20^{\circ} C$, the temperature of the surroundings to which it rejects heat is :
A. $41^{\circ} C$
B. $11^{\circ} C$
C. $21^{\circ} C$

D. $31^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

18. A charge particle is moving in a uniform magnetic field ib a circular path. The energy of the particle is doubled. If the initial radius of he circular path was R, the radius of the new circular path after the energy is doubled will be
A. $\frac{R}{2}$
B. $\sqrt{2} R$
C. 2 R
D. $\frac{R}{\sqrt{2}}$

Answer: B

D Watch Video Solution
19. The magnetic field due to current carrying circular coil loop of radius 6 cm at a point on axis at a distance of 8 cm from the centre is
$54 \mu T$. What is the value at the centre of loop

?

A. $75 \mu T$
B. $125 \mu T$
C. $150 \mu T$
D. $250 \mu T$

Answer: D

D Watch Video Solution
20. Two short bar magnets of dipole moments
M and $M \sqrt{3}$ are joined at right angles to form
a cross as depicted in the figure. The value of
θ for which the system remains in equilibrium
in a uniform external magnetic field B, is

A. $\theta=30^{\circ}$
B. $\theta=45^{\circ}$
C. $\theta=60^{\circ}$
D. $\theta=15^{\circ}$

Answer: C

D Watch Video Solution
21. A small body is dropped from a rising balloon. A person A stands on ground, while another person B is on the balloon.

Immediately, after the body is released, Choose the correct statement :
A. A and B, both feel that body is coming
(going) down.
B. A and B, both feel that the body is going
up
C. A feels that the body is coming down
while B feels that the body is going up
D. A feels that the body is going up ,while B
feels that the body is going down.

Answer: D

D Watch Video Solution

22. The trajectory of a projectile in a vertical
plane is $y=a x-b x^{2}$, where a and b are constant and x and y are, respectively, horizontal and vertical distances of the projectile from the point of projection. The maximum height attained by the particle and the angle of projectile from the horizontal are.
A. $\frac{b^{2}}{2 a}, \tan ^{-1}(b)$
B. $\frac{a^{2}}{b}, \tan ^{-1}(2 a)$
C. $\frac{a^{2}}{4 b}, \tan ^{-1}(a)$
D. $\frac{2 a^{2}}{b}, \tan ^{-1}(a)$

Answer: C

D Watch Video Solution

23. A uniform rod of the length of 1 m and mass of 2 kg is attached to side support at O as shown in the figure. The rod is at
equilibrium due to upward force T acting at P.

Assume the acceleration due to gravity as
$10 \mathrm{~ms}^{-2}$ The value of T is

A. 0
B. 2 N
C. 5 N
D. 10 N

Answer: D

D Watch Video Solution

24. A man stands on a weighing machine kept inside a lift. Initially the lift is ascending with the acceleration ' a ' due to which the reading is W. Now the lift decends with the same acceleration and reading 10% of initial. Find the acceleration of lift ?
A. $\frac{g}{19}$

B $9 g$
 B. $\frac{g}{11}$

C. zero
D. g

Answer: B

- Watch Video Solution

25. If the half-life of a radioactive sample is 10
hours its mean life is
A. 1.44 hours
B. 66.93 hours
C. 14.4 hours
D. 0.693 hours

Answer: C

- Watch Video Solution

26. At any instant, the ratio of the amounts of two radioactive substance is $2: 1$. If their half-
lives be, respectively, $12 h$ and $16 h$, then after
two days, what will be the ratio of the substances?
A. $1: 1$
B. $1: 2$
C. $3: 1$
D. $4: 1$

Answer: A

D Watch Video Solution
27. The simple harmonic motion of a particle is
given by $\mathrm{x}=\mathrm{a} \sin 2 \pi t$. Then, the location of
the particle from its mean position at a time $1 / 8^{\text {th }}$ of second is
A. a
B. $\frac{a}{2}$
C. $\frac{a}{\sqrt{2}}$
D. $\frac{a}{4}$

Answer: C

28. The $x-t$ graph of a particle undergoing simple harmonic motion is shown below. The accelertion of the particle at $t=4 / 3 s$ is

A. $\frac{\sqrt{3}}{32} \pi^{2} \mathrm{cms}^{-2}$
B. $-\frac{\pi^{2}}{32} \mathrm{cms}^{-2}$
C. $\frac{\pi^{2}}{32} c m s^{-2}$
D. $-\frac{\sqrt{3}}{32} \pi^{2} c m s^{-2}$

Answer: D

D Watch Video Solution

29. Sodium and copper have work functions
2.3 eV and 4.5 eV respectively. Then the ratio
of the wavelength is nearest
A. $1: 2$
B. $4: 1$
C. 2:1
D. 1: 4

Answer: C

D Watch Video Solution

30. It takes 4.6 eV remove one of the least tightly bound electrons from a metal surface.

When monochromatic photons strike energy
from zero to 2.2 eV are ejected. What is the energy of the incident photons ?
A. 2.4 eV
B. 2.2 eV
C. 6.8 eV
D. 4.6 eV

Answer: C
(Watch Video Solution
31. A soap bubble of radius ' r ' is blown up to
form a bubble of radius $2 r$ under isothemal conditions. If σ be the surface tension of soap solution, the energy spent in doing so is
A. $6 \pi \sigma r^{2}$
B. $24 \pi \sigma r^{2}$
C. $12 \pi \sigma r^{2}$
D. $9 \pi \sigma r^{2}$

Answer: B
32. There are two identical small holes of area of cross section a on the opposite sides of a tank containing liquid of density ρ. The differences in height between the holes is h.

The tank is resting on a smooth horizontal
surface. The horizontal force which will have to
be applied on the tank to keep it in

equilibrium is

A. $g h \rho a$
B. $\frac{2 g h}{\rho a}$
C. $2 p a g h$
D. $\frac{\rho g h}{a}$

Answer: C
33. The near point of a person is 50 cm and the
far point is 1.5 m . The spectales required for reading purpose and for seeing distant objects are respectively
A. $-2 D$ and $+3 D$
B. $+2 D$ and $-3 D$
C. $+2 D$ and $-0.33 D$
D. $-2 D$ and $+0.33 D$

Answer: C

D Watch Video Solution

34. A ray of light is incident normally on a glass slab of thickness 5 cm and refractive index 1.6. The time taken to travel by a ray from source to surface of slab is same as to travel through glass slab. The distance of source from the surface is
A. 4 cm
B. 8 cm
C. 12 cm
D. 16 cm

Answer: B

- Watch Video Solution

35. A particle of mass $m=5$ units is moving with a uniform speed $v=3 \sqrt{2}$ units in the XYplane along the $y=x+4$. The magnitude of the angular momentum about origin is
A. Zero
B. 60 units
C. 7.5 units
D. $40 \sqrt{2}$ units

Answer: B

D Watch Video Solution

36. A ring starts to roll down the inclined plane of height h without slipping . The velocity when it reaches the ground is

> A. $\sqrt{\frac{10 g h}{7}}$
> B. $\sqrt{\frac{4 g h}{7}}$
> C. $\sqrt{\frac{10 g h}{3}}$
> D. $\sqrt{g h}$

Answer: D

D Watch Video Solution

37. The 6 V Zener diode shown in the figure has negligible resistance and a knee current of

5 mA . The minimum value of R (in Ω) so that
the voltage across it does not fall below 6 V is

A. 40
B. 60
C. 80
D. 120

Answer: C

38. The voltage gain of an amplifier stage is
39. The gain expressed $d B$ is :
A. 100
B. 20
C. 40
D. 10

Answer: B
(Watch Video Solution
39. A bubble is at the bottom of the lake of depth h. As the bubble comes to sea level, its radius increases three times. If atmospheric pressure is equal to I metre of water column, then h is equal to
A. 26 I
B. I
C. 25 I
D. 301

Answer: A

D Watch Video Solution

40. The time period of oscillation of a simple
pendulum is given by $T=2 \pi \sqrt{l / g}$
The length of the pendulum is measured as
$1=10 \pm 0.1 \mathrm{~cm}$ and the time period as
$T=0.5 \pm 0.02 s$. Determine percentage error
in te value of g.
A. 5%
B. 8%
C. 7%
D. None of these

Answer: B

- Watch Video Solution

41. Spherical wave fronts shown in figure,strike
a plane mirror .reflected

$$
1
$$

Answer: C
42. In Young's double slit experiment intensity
at a point is $\left(\frac{1}{4}\right)$ of the maximum intersity.
Angular position of this point is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{\lambda}{d}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{\lambda}{2 d}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{\lambda}{3 d}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{\lambda}{4 d}\right)
\end{aligned}
$$

- Watch Video Solution

43. A tuning fork of known frequency 256 Hz makes 5 beats per second with the vibrating string of a piano. The beat frequency decreases to 2 beats per second when the tension in the piano string is slightly increased. The frequency of the piano string before increasing the tension was
A. $(256+2) \mathrm{Hz}$
B. $(256-2) \mathrm{Hz}$
C. $(256-5) \mathrm{Hz}$
D. $(256+5) \mathrm{Hz}$

Answer: C

D Watch Video Solution

44. A stationary source (see figure) emits sound waves of frequency f towards a stationary wall. If an observer moving with speed u in a direction perpendicular to the wall measures a frequency $f^{\prime}=\frac{11}{8} f$ at the
instant shown, then u is related to the speed
of sound V_{s} as

Observer

$$
\begin{aligned}
& \text { A. } \frac{3}{4} V_{s} \\
& \text { B. } \frac{3}{8} V_{s} \\
& \text { C. } \frac{1}{4} V_{s} \\
& \text { D. } \frac{8}{3} V_{s}
\end{aligned}
$$

45. A body of mass $2 k g$ is thrown up vertically with kinetic energy of 490 J . If $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the height at which the kinetic energy of the body becomes half of the original value, is
A. 50 m
B. 25 m
C. 12.5 m
D. 19.6 m

Answer: C
(D) Watch Video Solution

