©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET TEST 79

Physics

1. The energy of the reaction $L i^{7}+p \rightarrow 2 H e^{4}$
is (the binding energy per nucleon in $L i^{7}$ and
$\mathrm{He}^{4} \quad$ nuclei are 5.60 and 7.60 MeV
respectively.)
A. 19.6 MeV
B. 2.4 MeV
C. 8.4 MeB
D. 17.28 MeV

Answer: D
(Watch Video Solution
2. The work function of the metal A is equal to
the ionization energy of the hydrogen atom in
the first excited state. The work function of the
metal B is equal to the ionization energy of
$H e^{+}$ion in the second orbit. Photons of the
same energy E are incident on both A and B
the maximum kinetic energy of photoelectrons
emitted from A is twice that of photoelectrons
emitted from B. Value of $E($ in eV) is
A. 23.8 eV
B. 20.8 eV

C. 32.2 eV

D. 24.6 eV

Answer: A

D Watch Video Solution

3. A small ball of mass M is suspended with
light inelastic string of length L from a block A of same mass which can move on a smooth horizontal surface as shown in the figure. The
wall is displaced by the angle θ from
equilibrium position \& then released.

Maximum velocity of block during subsequent motion of the system after release of ball is
A. $[g L(1-\cos \theta)]^{1 / 2}$
B. $[2 g L(1-\cos \theta)]^{-1 / 2}$
C. $[g L \cos \theta]^{1 / 2}$

D. Insufficient information to decide

Answer: A

D Watch Video Solution

4. The masses of five balls at rest and lying at equal distance in a straight line are in geometrical progression with ratio 2 and their coefficients of restitution are each $2 / 3$. If the
first ball is started towards the second with
velocity u, then the velocity communicated to $5^{t h}$ ball is

$$
\begin{aligned}
& \text { A. } \frac{5}{9} u \\
& \text { В. }\left(\frac{5}{9}\right)^{2} u \\
& \text { С. }\left(\frac{5}{9}\right)^{3} u \\
& \text { D. }\left(\frac{5}{9}\right)^{4} u
\end{aligned}
$$

Answer: D

D Watch Video Solution

5. A simple pendulum is oscillating with angular displacement 90° For what angle with vertical the acceleration of bob direction horizontal?

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{1}{3}\right) \\
& \text { B. } \cos ^{-1}\left(\frac{1}{3}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& \text { D. } \cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

6. Two particles A and B separated by a distance $2 R$ are moving counter clockwise along the same circular path of radius R each with uniform speed v. At time $t=0, A$ is given a tangential acceleration of magnitude $a=\frac{32 v^{2}}{25 \pi R}$ in the same direction of initial velocity
A. The time - lapse for the two bodies to
collide is $\frac{6 \pi R}{5 V}$
B. The angle covered by (A) is $\frac{9 \pi}{4}$
C. Angular velocity of A is $\frac{11 V}{5 R}$
D. Radial acceleration of A is $\frac{289 \mathrm{~V}^{2}}{5 R}$

Answer: B

D Watch Video Solution

7. Two bulbs when connected in parallel to a source take 100 W each. The total power consumed when they are connected in series with the same source is
A. 25 W
B. 50 W
C. 100 W
D. 200 W

Answer: B

D Watch Video Solution

8. In the given circuit the cells have zero internal resistance. The currents (in Amperes) passing through resistance $\quad R_{1}$ and R_{2}
respectively, are :

A. 0,1
B. 2, 2
C. $0.5,0$
D. 1,2

Answer: C

D Watch Video Solution
9. The variation of induced emf (E) with time
(t) in a coil if a short bar magnet is moved along its axis with a constant velocity is best represent as

Answer: B

- Watch Video Solution

10. For an ideal step-down transformer, the quantity which is constant for both the coils is
A. Current in the coils
B. Voltage across the coils
C. Resistance of coils
D. Power in the coils

Answer: D

D Watch Video Solution
11. Two small identical spheres having charges
$+10 \mu C$ and $-90 \mu C$ attract each other with a force of F newton. If they are kept in contant and then separated by the same distance, the new force between them is -
A. $\frac{F}{6}$
B. 16 F
C. $\frac{16 F}{9}$
D. 9 F

Answer: C

Watch Video Solution

12. The sketch below show cross section so equipotential surfaces between two charged.Conductors that are shown in solid black.Some points on the equipotenital surfaces .near the conductors are marked as
$A, B, C \ldots$. The arrangements lies in air
(Take $\left.\varepsilon_{0}=8.85 \times 10^{-12} C^{2} / N m^{2}\right]$

Surfaces charge density of the plate is equal to

> A. $8.85 \times 10^{-10} \mathrm{Cm}^{-2}$
> B. $-8.85 \times 10^{-10} \mathrm{Cm}^{-2}$
> C. $17.7 \times 10^{-10} \mathrm{Cm}^{-2}$
> D. $-17.7 \times 10^{-10} \mathrm{Cm}^{-2}$

Answer: A
(Watch Video Solution
13. Two bodies of masses 2 kg and 8 kg are separated by a distance of 9 m . The point where the resultant gravitational field intensity is zero at the distance of
A. 4.5 m from each mass
B. 6 m from 2 kg
C. 6 m from 8 kg
D. 2.5 m from 2 kg

Answer: C
14. What should be the angular velocity of earth about its own axis so that the weight of the body at the equator would become $\frac{3}{4}$ th of its present value?

> A. $\frac{1}{400} r a d s^{-1}$
> B. $\frac{1}{800} \mathrm{rads}^{-1}$
C. $\frac{1}{1600} \mathrm{rads}^{-1}$
D. $\frac{1}{3200} \mathrm{rads}^{-1}$

Answer: C

- Watch Video Solution

15. A black body at $1373^{\circ} \mathrm{C}$ emits maximum energy corresponding to a wavelength of 1.78 microns. The temperature of the moon for which $\lambda_{m}=14$ micron wood be
A. $62.6^{\circ} C$
B. $-58.9^{\circ} C$
C. $-63.7^{\circ} C$

D. $64.2^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

16. A Carnot engine operates with a source at

500 K and sink at 375 K . Engine consumes 600
kcal of heat per cycle. The heat rejected to sink per cycle is
A. 250 kcal

B. 350 kcal

C. 450 kcal
D. 550 kcal

Answer: C

- Watch Video Solution

17. Pressure P, Volume V and temperature T of a certain material are related by the $P=\frac{\alpha T^{2}}{V}$. Here α is constant. Work done by
the material when temparature changes from
T_{0} to $2 T_{0}$ while pressure remains constant is:
A. $3 \alpha T_{0}^{2}$
B. $5 \alpha T_{0}^{2}$
C. $\frac{2}{3} \alpha T_{0}^{2}$
D. $7 \alpha T_{0}^{2}$

Answer: A

D Watch Video Solution
18. A charged particle with charge q enters a
region of constant, uniform and mututally orthogonal fields \vec{E} and \vec{B} with a velocity \vec{v} perpendicular to both \vec{E} and \vec{B}, and comes out without any change in magnitude or direction of \vec{v}. Then

$$
\begin{aligned}
& \text { А. } \vec{v}=\frac{\vec{B} \times \vec{E}}{E^{2}} \\
& \text { В. } \vec{v}=\frac{\vec{E} \times \vec{B}}{B^{2}} \\
& \text { С. } \vec{v}=\frac{\vec{B} \times \vec{E}}{B^{2}} \\
& \text { D. } \vec{v}=\frac{\vec{E} \times \vec{B}}{E^{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

19. A current- carrying straight wire is kept along the axis of a circular loop carrying a current. The straight wire
A. will exert an inward force on the circular loop
B. will exert an outward force on the circular loop
C. Will wxert a force on the circular loop parallel to itself
D. Will not exert any force on the circular loop

Answer: D

D Watch Video Solution

20. A magnet of moment $4 A m^{2}$ is kept suspended in a magnetic field of induction
$5 \times 10^{-5} T$. The workdone in rotating it through 180° is

> A. $4 \times 10^{-4} J$
> B. $5 \times 10^{-4} J$
> C. $2 \times 10^{-4} J$
> D. $10^{-4} J$

Answer: A
(Watch Video Solution
21. A car accelerates from rest at a constant rate for some time after which it decelerates at a constant rate β to come to rest. If the total time elapsed is t, the maximum velocity acquired by the car is given by :

$$
\begin{aligned}
& \text { A. }\left(\frac{\alpha^{2}-\beta^{2}}{\alpha \beta}\right) t \\
& \text { B. }\left(\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\right) t \\
& \text { C. } \frac{(\alpha+\beta) t}{\alpha \beta} \\
& \text { D. } \frac{\alpha \beta t}{\alpha+\beta}
\end{aligned}
$$

- Watch Video Solution

22. To a stationary man, rain appears to be falling at his back at an angle 30° with the vertical. As he starts moving forward with a speed of $0.5 \mathrm{~ms}^{-1}$, he finds that the rain is falling vertically.

The speed of rain with respect to the stationary man is.

$$
\text { A. } 0.5 m s^{-1}
$$

B. $1 m s^{-1}$
C. $\frac{\sqrt{3}}{2} m s^{-1}$
D. $\frac{1}{\sqrt{3}} m s^{-1}$

Answer: B

D Watch Video Solution

23. A liquid of density p is coming out of a hose pipe of radius a with horizontal speed v and hits a mesh . 50% of the liquid passes
through the mesh unaffected . 25% comes
back with the same speed .The resultant pressure on the mesh will be:
A. $\frac{1}{2} \rho v^{2}$
B. ρv^{2}
C. $\frac{3}{4} \rho v^{2}$
D. $\frac{1}{4} \rho v^{2}$

Answer: C
(Watch Video Solution
24. In the figure shown , all surface are smooth
. Acceleration of mass ' 4 m ' , when the system Is
released from rest will be

> A. $\frac{2 g}{9}$
> B. $\frac{4 g}{9}$
> C. $\frac{2 g}{3}$
> D. $\frac{g}{3}$

Answer: B
25. There is a stream of neutrons with a kinetic energy of $0.0327 e V$. If the half-life of neutrons
is 700 s , what fraction of neutrons will decay before they travel is distance of 10 m ? Given mass of neutron $=1.676 \times 10^{-27} \mathrm{~kg}$.
A. 3.96×10^{-6}
B. 3.90×10^{-6}
C. 3.85×10^{-6}
D. 4.86×10^{-6}

Answer: A

D Watch Video Solution

26. A radioactive element decays by $\beta-$ emission. If mass of parent and daughter nuclide are m_{1} and m_{2} respectively, calculate energy liberated during the emission.
A. $\left[m_{1}-m_{2}-2 m_{e}\right] c^{2}$
B. $\left[m_{2}-m_{1}-2 m_{e}\right] c^{2}$
C. $\left[m_{e}-m_{2}-2 m_{1}\right] c^{2}$

$$
\text { D. }\left[m_{2}-m_{e}-2 m_{1}\right] c^{2}
$$

Answer: A

D Watch Video Solution

27. A particle is subjected to two simple harmonic motion along x and y-directions according to equations $x=4 \sin 100 \pi t$ and $y=$ $3 \sin 100 \pi t$ Choose the correct statement -
A. Motion of particle will be on a ellipse
B. Motion of the particle will be on a straight line
C. Particle will execute SHM of amplitude 5
D. Particle will not execute SHM

Answer: B

D Watch Video Solution

28. One end of a long mettalic wire of length L is tied to the ceiling. The other end is tied to massless spring of spring constant K. A mass
M hangs freely from the free end of the spring.

The area of cross-section and Young's modulus of the wire are A and Y respectively. If the mass is slightly pulled down and released, it will oscillate with a time period T equal to

$$
\begin{aligned}
& \text { A. } 2 \pi\left(\frac{m}{K}\right) \\
& \text { B. } 2 \pi\left[\frac{(Y A+K L) m}{Y A K}\right]^{\frac{1}{2}} \\
& \text { C. } 2 \pi \frac{m Y A}{K L} \\
& \text { D. } 2 \pi \frac{m L}{Y A}
\end{aligned}
$$

Answer: B

29. Given that a photon of light of wavelength
$10,000 A$ has an energy equal to 1.23 eV . When
light of wavelength 5000 A and intenstiy I_{0}
falls on a photoelectric cell, the saturation current is $0.40 \times 10^{-6} A$ and the stopping potential is 1.36 V , then the work function is
A. 0.43 eV
B. 0.55 eV
C. 1.10 eV

D. 1.53 eV

Answer: C

D Watch Video Solution

30. Light of wavelength 488 nm is produced by
an argon laser which is used in the photoelectric effect. When light from this spectral line is incident on the emitter, the stopping (cut - off) potential of photoelectrons is 0.38 V . Find the work
function of the material from which the emitter is made.
A. 1.38 eV
B. 2.55 eV
C. 2.17 eV
D. 2.93 eV

Answer: C
(Watch Video Solution
31. A drop of mercury of radius 2 mm is split into 8 identical droplets. Find the increase in surface energy. Surface tension of mercury $=0.465 \mathrm{Jm}^{-2}$
A. $23.4 \mu J$
B. $18.5 \mu J$
C. $26.8 \mu J$
D. $16.8 \mu J$

Answer: A
32. Mercury is completely filled in a rectangular take of height 72 cm . The atmospheric pressure at the place is 72 cm . of Hg. Find the distance in cm of point of application from bottom of tank of the net
force, on the inner surface of the side vertical wall of tank.
A. 32 cm
B. 16 cm
C. 74 cm
D. 42 cm

Answer: A

- Watch Video Solution

33. A convex lens if in contact with concave
lens. The magnitude of the ratio of their focal
length is $\frac{2}{3}$. Their equivalent focal length is 30 cm . What are their individual focal lengths?
A. $-75,50$
B. $-10,15$
C. 75,50
D. $-15,10$

Answer: D

D Watch Video Solution

34. A glass prism of refractive index 1.5 is immersed in water (refractive index 4/3). A light beam incident normally on the face $A B$
is totally reflected to reach the face $B C$, Fig. if

A. $\sin \theta \geq \frac{8}{9}$
B. $\sin \theta \geq \frac{2}{3}$
C. $\sin \theta=\frac{\sqrt{3}}{2}$

$$
\text { D. } \frac{2}{3}<\sin \theta<\frac{8}{9}
$$

Answer: A

D Watch Video Solution

35. A solid sphere of mass M and radius R having tmoment of inertia I about its diameter is recast into a solid dise of radius r and thickness t . The moment of inertia of the disc about an axis passing the edge and
perpendicular to the plane remains I. Then R and r are related as

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{15}} R \\
& \text { B. } \frac{2}{\sqrt{5}} R \\
& \text { C. } \frac{3}{\sqrt{15}} R \\
& \text { D. } \frac{\sqrt{3}}{\sqrt{15}} R
\end{aligned}
$$

Answer: A
36. A ring mass m and radius R has three particle attached to the ring as shown in the figure. The centre of the centre v_{0}. Find the kinetic energy of the system. (Slipping is absent).

A. $6 m v_{0}^{2}$
B. $12 m v_{0}^{2}$
C. $4 m v_{0}^{2}$
D. $8 m v_{0}^{2}$

Answer: A

- Watch Video Solution

37. Which of the following statements is not true?
A. The resistance of intrinsic
semiconductors decreases with increase
of temperature
B. Doping pure Si with trivalent impurities
give p - type semiconductors
C. The majority carriers in n - type semiconductors are holes
D. A p - n junction can act as a semiconductor diode
38. Select the outputs Y of the combination of

$$
\begin{array}{lrr}
\text { gates shown below for } & \text { inputs } \\
A=1, B=0, A=1, B=1 & & \text { and } \\
A=0, B=0 \text { respectively :- } &
\end{array}
$$

A. $(0,1,1)$
B. $(1,0,1)$
C. $(1,1,1)$
D. $(1,0,0)$

Answer: D

D Watch Video Solution

39. The coefficient of apparent expansion of a liquid when determined using two different vessle A and B are γ_{1} and γ_{2}, respectily. If the coefficient of linerar expansion of vesel A is α.

Find the coefficient of linear expension of the vessel B.

$$
\begin{aligned}
& \text { A. } \frac{\alpha \gamma_{1}+\gamma_{2}}{\gamma_{1}+\gamma_{2}} \\
& \text { B. } \frac{\gamma_{1}-\gamma_{2}}{2 \alpha} \\
& \text { C. } \frac{\gamma_{1}-\gamma_{2}+\alpha}{3 \alpha} \\
& \text { D. } \frac{\gamma_{1}-\gamma_{2}}{3}+\alpha
\end{aligned}
$$

Answer: D

D Watch Video Solution

40. Density of a liquid in CGS system is
$0.625 \frac{g}{\mathrm{~cm}^{3}}$. What is its magnitude is SI system?
A. 0.625
B. 0.0625
C. 0.00625
D. 625

Answer: D
(Watch Video Solution
41. In YDSE intensity at central maxima is I_{0}

The ratio $\frac{I}{I_{0}}$, at path difference $\frac{\lambda}{8}$ on the screen from central maxima, is closed to
A. 0.74
B. 0.8
C. 0.9
D. 0.85

Answer: D

42. Unpolarized light of intensity I_{0} is incident on surface of a block of glass at brewster's angle. In that case, which one of the following statements is true-
A. transmitted light is partially polarized
with intensity $\frac{I_{0}}{2}$
B. transmitted light is completely polarized
with intensity less than $\frac{I_{0}}{2}$
C. reflected light is partially polarized with
intensity $\frac{I_{0}}{2}$

D. reflected light is completely polarized

with intensity less than $\frac{I_{0}}{2}$

Answer: D

D Watch Video Solution

43. A closed organ pipe and an open organ
pipe of same length produce 2 beats when
they are set into viberations simultaneously in
their fundamental mode. The length of open organ pipe is now halved and of closed organ
pipe is doubled, the nunber of beats produced wil be
A. 7
B. 4
C. 8
D. 2

Answer: A
(Watch Video Solution
44. A tuning fork of frequency 480 Hz produces 10 beats per second when sounded with a vibrating sonometer string. What must have been the frequency of the string if a slight increase in tension produces lesser beats per second than before
A. 490 Hz
B. 470 Hz
C. 460 Hz
D. 480 Hz

Answer: B

D Watch Video Solution

45. A 0.5 kg block slides from the point A on a
horizontal track with an initial speed $3 \mathrm{~m} / \mathrm{s}$
towards a weightless horizontal spring of length $1 m$ and force constant $2 N / m$. The part $A B$ of the track is frictionless and the part BC has the coefficient of static and kinetic friction as ' 0.22 ' and 0.20 respectively. If the distances AB and BD are $2 m$ and $2.14 m$
respectively, find total distance through which
the block moves before it comes to rest completely. ${ }^{`}\left(g=10 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)\right)$.
A. 2.5 m
B. 4.42 m
C. 4.24 m
D. 2.44 m

Answer: C

D Watch Video Solution

