đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET TEST 80

Physics

1. The orbital frequency of an electron in the
hydrogen atom is proportional to
A. n^{3}
B. n^{-3}
C. n
D. n^{0}

Answer: B

D Watch Video Solution

2. How many different wavelengths may be observed in the spectrum form a hydrogen
sample, if the atoms are excited to third excited state?
A. 3
B. 4
C. 5
D. 6

Answer: D
(Watch Video Solution
3. A rope thrown over a pulley has a ladder with a man of mass m on one of its ends and a counter balancing mass M on its other end. The man climbs with a velocity v_{r} relative to ladder. Ignoring the masses of the pulley and the rope as well as the friction on the pulley axis, the velocity of the centre of mass of this system is:

$$
\begin{aligned}
& \text { A. } \frac{m}{M} V_{r} \\
& \text { B. } \frac{m}{2 M} V_{r} \\
& \text { с. } \frac{M}{m} V_{r}
\end{aligned}
$$

$$
\text { D. } \frac{2 M}{m} V_{r}
$$

Answer: B

D Watch Video Solution

4. Particle A makes a head on elastic collision
with another stationary particle B. They fly apart in opposite directions with equal speeds. The mass ratio will be

$$
\text { A. } \frac{1}{3}
$$

B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{\sqrt{3}}$

Answer: A

D Watch Video Solution

5. A particle moves with a speed v in a circle of radius R.when the particle reaches from A to B as shown in the figure, then Y component of
average velocity is

A. $\frac{2 v}{\pi}$
B. $-\frac{v}{\pi}$
C. $-\frac{2 v}{\pi}$
D. zero

Answer: B

D Watch Video Solution

6. At time $\mathrm{t}=0$, a horizontal disc starts
rotating with angular acceleration 1 red s
about an axis perpendicular to its plane and passing through its centre. A small block is
lying on this disc at a distance 0.5 m from the centre. Coefficient of friction between the surface of block and disc is 0.255 . The block
will start slipping on the disc at time t. Which is approximately equal to
A. $2 \sqrt{3} s$
B. $2 \sqrt{2} s$
C. 6 s
D. $\sqrt{5} s$

Answer: D
(Watch Video Solution
7. In a galvanometer, 5% of the total current in
the circuit passes through it. if the resistance
of galvanometer is G, the shunt resistance S connected to galvanometer is
A. 19 G
B. $\frac{G}{19}$
C. 20 G
D. $\frac{G}{20}$

Answer: B
8. In the circuit shown in figure, reading of voltmeter is V_{1} when only S_{1} is closed, reading of voltmeter is V_{2} when only S_{2} is closed, and reading of voltmeter is V_{3} when both S_{1} and S_{2} are closed. Then.

A. $V_{3}>V_{2}>V_{1}$
B. $V_{2}>V_{1}>V_{3}$
C. $V_{3}>V_{1}>V_{2}$
D. $V_{1}>V_{2}>V_{3}$

Answer: B

D Watch Video Solution

9. A thin semi-circular conducting ring of radius R is falling with its plane verticle in
horizontal magnetic induction (\vec{B}). At the position MNQ the speed of the ring is v, and the potential difference developed across the ring is

A. Zero
B. $\frac{B \pi R^{2}}{2}$ and M is at a higher potential
C. $\pi B R v$ and Q is at a higher potential

D. $2 R B v$ and Q is at a higher potential

Answer: D

D Watch Video Solution

10. A transformer of efficiency 90% has turns
ratio $10: 1$. If the voltage across the primary is

220 V and current in the primary is 0.5 A , then
the current in secondary is
A. 5.5 A
B. $5 A$
C. $4 A$
D. 4.5 A

Answer: D

D Watch Video Solution

11. A hollow charged metal sphere has radius r.

If the potential difference between its surface and a point at a distance $3 r$ from the centre is

V , then electric field intensity at a distance $3 r$
is

> A. $\frac{V}{2 r}$
> B. $\frac{V}{3 r}$
> C. $\frac{V}{6 r}$
> D. $\frac{V}{4 r}$

Answer: C
(Watch Video Solution
12. Show in the figure are two point charge $+Q$
and $-Q$ inside the cavity of the Spherical shell.
the charges are kept near the surface of the
cavity on opposite sides of the centre of the
shell. if σ_{1} is the surface charge on the inner
surface and Q_{1} net charge on it and σ_{2} the
surface charge on the outer surface and Q_{2}
net charge on it then :

A. $\sigma_{1}=0, Q_{1}=0, \sigma_{2}=0, Q_{2}=0$
B. $\sigma_{1} \neq 0, Q_{1}=0, \sigma_{2} \neq 0, Q_{2}=0$
C. $\sigma_{1} \neq 0, Q_{1} \neq 0, \sigma_{2} \neq 0, Q_{2} \neq 0$

$$
\text { D. } \sigma_{1} \neq 0, Q_{1}=0, \sigma_{2}=0, Q_{2}=0
$$

Answer: D

D Watch Video Solution

13. The gravitational field in a region is given
by $\vec{g}=(5 \hat{i}+12 \hat{j}) \mathrm{N} \mathrm{kg}^{-1}$. The change in the gravitational potentil energy of a particle of mass 2 kg when it is taken from the origin to
a point $(7 m,-3 m)$ is
B. $13 \sqrt{58} J$
C. $2 J$
D. 1 J

Answer: C

D Watch Video Solution

14. If earth is supposed to be a sphere of radius R , if g_{30} is value of acceleration due to gravity at latitude of 30° and g at the equator, the value of $g-g_{30^{\circ}}$ is
A. $\frac{1}{4} \omega^{2} R$
B. $\frac{3}{4} \omega^{2} R$
C. $\omega^{2} R$
D. $\frac{1}{2} \omega^{2} R$

Answer: B

D Watch Video Solution

15. If wavelengths of maximum intensity of radiations emitted by the sun and the moon
are $0.5 \times 10^{-6} \mathrm{~m}$ and $10^{-4} \mathrm{~m}$ respectively,
the ratio of their temperature is
A. 1: 100
B. 1:200
C. 200: 1
D. $400: 1$

Answer: C
(Watch Video Solution
16. An inverted bell lying at the bottom of a lake 47.6 m deep has $50 \mathrm{~cm}^{3}$ of air trapped in
it. The bell is brought to the surface of the lake. The volume of the trapped air will be (atmospheric pressure $=70 \mathrm{~cm}$ of $H g$ and density of $H g=13.6 \mathrm{~g} / \mathrm{cm}^{3}$).
A. $600 \mathrm{~cm}^{3}$
B. $300 \mathrm{~cm}^{3}$
C. $250 \mathrm{~cm}^{3}$
D. $200 \mathrm{~cm}^{2}$

Answer: B

- Watch Video Solution

17. 143 calories of heat energy are supplied to
a gas. Its internal energy rises by 500 joules.
If the pressure remains constant and is equal
to $10^{5} \mathrm{Nm}^{-2}$, the change in the volume of the
gas is
A. 1000 litres
B. 100 litres

C. 10 litres

D. 1 litre

Answer: D

D Watch Video Solution

18. A bar magnet has coercivity $4 \times 10^{3} \mathrm{Am}^{-1}$.

It is desired to demagnetise it by inserting it inside a solenoid 12 cm long and having 60
turns. The current that should be sent through the solenoid is
A. $2 A$
B. $4 A$
C. $6 A$
D. $8 A$

Answer: D

D Watch Video Solution

19. A U-shaped conducting frame is fixed in space. A conducting rod CD lies at rest on the smooth frame as shown. The frame is in a
uniform magnetic field B_{0} which is
perpendicular to be plane of the frame. At the
time $t=0$, the magnitude of the magnetic
field being to change with time t as, $B=\frac{B_{0}}{1+k t}$, where k is a positive constant.

For no current to be ever induced in the frame
the speed with which rod should be pulled starting from time $t=0$ is (the rod $C D$ should be moved such that its velocity must lie in the
plane of frame and perpendicular to rod (CD)

A. ak
B. bk
C. $a(1+k t)$
D. $b(1+k t)$

Answer: A

- Watch Video Solution

20. A 0.5 kg block slides from the point A on a horizontal track with an initial speed $3 \mathrm{~m} / \mathrm{s}$ towards a weightless horizontal spring of length $1 m$ and force constant $2 N / m$. The part $A B$ of the track is frictionless and the part $B C$ has the coefficient of static and kinetic friction as ' 0.22 ' and 0.20 respectively. If the distances $A B$ and $B D$ are $2 m$ and $2.14 m$ respectively, find total distance through which
the block moves before it comes to rest completely. ${ }^{`}\left(\mathrm{~g}=10 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)\right)$.
A. point north - west
B. point north - east
C. point south - east
D. point south - west

Answer: B
(Watch Video Solution
21.

The position-time (x-t) graphs for two children
A and B returning from their school O to their
homes P and Q respectively along straight line path (taken as x-axis) are shown in figure.

Choose the correct statement (s):
A. A lives closer to the school than B
B. A starts from the school earlier than B
C. A and B have equal average velocities
from 0 to t_{0}
D. B overtakes A on the way

Answer: C

D Watch Video Solution

22. Two cars move in the same direction along
parallel roads. One of them is a 200 m , long travelling with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The
second one is 800 m long travelling with a
velocity of $7.5 \mathrm{~m} / \mathrm{s}$. How long will it take for the first car to overtake the second car?
A. 20 s
B. 40 s
C. 60 s
D. 80 s

Answer: D

D Watch Video Solution
23. A bullet of mass 20 g has an initial speed of $1 \mathrm{~ms}^{-1}$ just before it starts penetrating a mud wall of thickness 20 cm . If the wall offers a mean resistance of $2.5 \times 10^{-2} N$ the speed of the bullet after emerging from the other side of the wall is close to:

$$
\text { A. } 0.7 m s^{-1}
$$

B. $0.3 m s^{-1}$
C. $0.1 m s^{-1}$
D. $0.4 m s^{-1}$

Answer: A

D Watch Video Solution

24. In figure two identical particles each of mass m are tied together with an inextensible string. This is pulled at its centre with a constant force F. If the whole system lines on a smooth horizontal plane, then the acceleration of each particle towards each
other is

A. $\frac{\sqrt{3}}{2} \frac{F}{m}$
B. $\frac{1}{2 \sqrt{3}} \frac{F}{m}$
C. $\frac{2}{\sqrt{3}} \frac{F}{m}$
D. $\sqrt{3} \frac{F}{m}$

Answer: B

- Watch Video Solution

25. Half-lives of two radioactive elements A and
B are 20 minutes and 40 minutes, respectively. Initially, the samples have equal number of nuclei. After 80 minutes, the ratio of decayed numbers of A and B nuclei will be -
(A) $1: 16$
(B) $4: 1$
(C) $1: 4$
(D) $5: 4$
A. $1: 4$
B. 5: 4
C. $1: 16$
D. $4: 1$

Answer: B

D Watch Video Solution

26. Calculate the energy released when three
alpha particles combine to form $a^{12} C$ nucleus.
The atomic mass of ${ }_{-} 2^{4} H e$ is $4.002603 u$.

A. 0.007809 u

B. 0.002603 u
C. 4.002603 u
D. 0.5 u

Answer: A

D Watch Video Solution
27. Two identical springs are connected in
series and parallel as shown in the figure. If
f_{s} and f_{p} are frequencies of arrangements,
what is $\frac{f_{s}}{f_{p}}$?

A. $1: 2$
B. $2: 1$
C. 1:3
D. $3: 1$

Answer: A

D Watch Video Solution

28. Two simple pendulum first of bob mass M_{1}
and length L_{1} second of bob mass M_{2} and length $L_{2} M_{1}=M_{2}$ and $L_{1}=2 \mathrm{~L}_{-}(2)^{\prime}$. if the vibrational energy of both is same which is correct?
A. Amplitude of B is smaller than A
B. Amplitude of B is greater than A

C. Amplitude will be same

D. None of the above

Answer: A

D Watch Video Solution

29. Electrons with de-Broglie wavelength λ fall
on the target in an X-ray tube. The cut-off
wavelength of the emitted X-ray is

$$
\text { A. } \lambda_{0}=\frac{2 m c \lambda^{2}}{h}
$$

B. $\lambda_{0}=\frac{2 h}{m c}$
C. $\lambda_{0}=\frac{2 m^{2} c^{2} \lambda^{2}}{h^{2}}$
D. $\lambda_{0}=\lambda$

Answer: A

- Watch Video Solution

30. The kinetic energy of the most energetic photoelectrons emitted from a metal surface is doubled when the wavelength of the
incident radiation is reduced from λ_{1} to λ_{2}

The work function of the metal is

$$
\begin{aligned}
& \text { A. } \frac{h c}{\lambda_{1} \lambda_{2}}\left(2 \lambda_{2}-\lambda_{1}\right) \\
& \text { B. } \frac{2 h c}{\lambda_{1} \lambda_{2}}\left(2 \lambda_{1}-\lambda_{2}\right) \\
& \text { C. } \frac{2 h c}{\lambda_{1} \lambda_{2}}\left(\lambda_{1}+\lambda_{2}\right) \\
& \text { D. } \frac{2 h c}{\lambda_{1} \lambda_{2}}\left(\lambda_{1}-\lambda_{2}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

31. 8000 identical water drops are combined to form a big drop then the ratio of the final
surface energy to the initial surface energy of all the drops together is
A. $1: 10$
B. 1: 15
C. 1: 20
D. $1: 25$

Answer: C

32. Adiabatic modulus of elasticity of a gas is
$2.1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. What will be isothermal
modulus if elasticity $\left(\frac{C_{p}}{C_{v}}=1.4\right)$

> A. $1.2 \times 10^{5} \mathrm{Nm}^{-2}$
> B. $4 \times 10^{5} \mathrm{Nm}^{-2}$
> C. $1.5 \times 10^{5} \mathrm{Nm}^{-2}$
> D. $1.8 \times 10^{5} \mathrm{Nm}^{-2}$

Answer: C

Watch Video Solution

33. The place faces of two identical planoconvex lenses, each with focal length fare pressed against each other using an optical glue to from a usual convex lens. The distance from the optical centre at which an object must be placed to obtain the image same as the size of the object is
A. $\frac{f}{4}$
B. $\frac{f}{2}$
C. f
D. $2 f$

Answer: C

- Watch Video Solution

34. It is found that Ball electromagnetic signals sent from A towards B reach point C.

The speed of electromagnetic signals in glass
cannot be.

A. $1.0 \times 10^{8} \mathrm{~ms}^{-1}$
B. $2.15 \times 10^{8} \mathrm{~ms}^{-1}$
C. $2 \times 10^{7} m s^{-1}$
D. $4 \times 10^{7} m s^{-1}$

Answer: B

D Watch Video Solution

35. A thin circular disk is in the xy plane as
shown in the figure. The ratio of its moment of
inertia about z and z^{\prime} axes will be :

A. 1: 4
B. 1:5
C. $1: 3$
D. 1:2

Answer: C

D Watch Video Solution

36. Two fixed frictionless inclined plane making angles 30° and 60° with the vertical are
shown in the figure. Two blocks A and B are placed on the two planes What is the relative
vertical acceleration of A with respect to B ?

A. Zero
B. $4.9 \mathrm{~ms}^{-2}$ in the vertical direction
C. $4.9 \mathrm{~ms}^{-2}$ in horizontal direction
D. $9.8 m s^{-2}$ in the vertical direction

Answer: B

37. In the figure, potential difference between

$A \& B$ is

A. 10 V
B. 5 V
C. 15 V
D. 0 V

Answer: A

D Watch Video Solution

38. The combination of gates shown below produces

A. OR gate
B. NOT gate
C. XOR gate
D. NAND gate

Answer: A

D Watch Video Solution

39. Coefficient of linear expansion of brass and steel rods are α_{1} and α_{2}. Length of brass and steel rods are l_{1} and l_{2} respectively. If $\left(l_{2}-l_{1}\right)$
is maintained same at all temperature, which
one of the following relations holds good?

$$
\begin{aligned}
& \text { A. } \alpha_{1} l_{1}=\alpha_{2} l_{2} \\
& \text { B. } \alpha_{1} l_{2}=\alpha_{2} l_{1} \\
& \text { C. } \alpha_{1}^{2} l_{2}=\alpha_{2}^{2} l_{1} \\
& \text { D. } \alpha_{1} l_{2}^{2}=\alpha_{2} l_{1}^{2}
\end{aligned}
$$

Answer: A
40. The quantities A and B are related by the relation, $m=A / B$, where m is the linear density and A is the force. The dimensions of B are of
A. Pressure
B. Work
C. Latent heat
D. None of the above

Answer: C
41. In a given region of 10 fringes are observed in the reflected beam from a thin film. If the wavelength of th incident light is changed from $4200 \AA$ to $6000 \AA$, then the number of fringes observed in the same region will be
A. 4
B. 7
C. 11
D. 3

Answer: B

- Watch Video Solution

42. Light propagates 2 cm distance in glass of refractive index 1.5 in time t_{0}. In the same time t_{0}, light propagates a distance of 2.25 cm in medium. The refractive index of the medium is
A. $\frac{4}{3}$
B. $\frac{3}{2}$
C. $\frac{8}{3}$

D. None of these

Answer: A

D Watch Video Solution

43. In the experiment for the determination of
the speed of sound in air using the resonance
column method, the length of the air column
that resonates in the fundamental mode, with
a tuning fork is 0.1 m . When this length is
changed to $0.35 m$, the same tuning fork
resonates with the first overtone. Calculate the end correction.
A. 0.012 m
B. 0.025 m
C. 0.05 m
D. 0.024 m

Answer: B
(Watch Video Solution
44. Two sound waves of wavelength $1 m$ and
$1.01 m$ in a gas produce 10 beats in 3 s . The
velocity of sound in the gas is
A. $150 m s^{-1}$
B. $115.2 m s^{-1}$
C. $336.6 m s^{-1}$
D. $200 m s^{-1}$

Answer: C

D Watch Video Solution
45. A machine gun fires 240 bullets per minute.

If the mass of each bullet is 10 g and the velocity of the bullets is $600 \mathrm{~ms}^{-1}$, then find power (in kW) of the gun.
A. 43200
B. 432
C. 72
D. 7.2

Answer: D

