đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NTA MOCK TESTS

NTA NEET TEST 98

Physics

1. The product of linear momentum and angular momentum of an electron of the
hydrogen atom is proportional to n^{x}, where x
is

A. 0
B. 1
C. -2
D. 2

Answer: A

D Watch Video Solution
2. When ${ }_{-}(3) L i^{7}$ nuclei are bombarded by protons , and the resultant nuclei are _ (4) $B e^{8}$, the emitted particle will be
A. Neutrons
B. Alpha particles
C. Beta particles
D. Gamma photons

Answer: D

D Watch Video Solution
3. Three particles of massses $50 \mathrm{~g}, 100 \mathrm{~g}$ and 150 g are placed at the vertices of an equilateral triangle of side 1 m (as shown in the figure) . The (x, y) coordinates of the centre of mass will be :

A. $\left(\frac{7}{12} m, \frac{\sqrt{3}}{4} m\right)$
B. $\left(\frac{7}{12} m, \frac{\sqrt{3}}{8} m\right)$
C. $\left(\frac{\sqrt{3}}{4} m, \frac{5}{12} m\right)$
D. $\left(\frac{\sqrt{3}}{8} m, \frac{7}{12} m\right)$

Answer: A

D Watch Video Solution

4. Two perfectly elastic particles A and B of equal masses travelling along a line joining them with velocities $15 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$
respectively collide. Their velocities after the elastic collision will be (in m / s) respectively
A. $10 \mathrm{~m} \mathrm{~s}^{-1}, 15 \mathrm{~m} \mathrm{~s}^{-1}$
B. $20 \mathrm{~m} \mathrm{~s}^{-1}, 5 \mathrm{~m} \mathrm{~s}^{-1}$
C. $0 \mathrm{~m} \mathrm{~s}^{-1}, 25 \mathrm{~m} \mathrm{~s}^{-1}$
D. $5 \mathrm{~m} \mathrm{~s}^{-1}, 20 \mathrm{~m} \mathrm{~s}^{-1}$

Answer: A

- Watch Video Solution

5. What is the linear velocity of a body on the
surface of the earth at the equator? Given the
radius of the earth is 6400 km . Period of rotation of the earth $=24$ hours
A. $465 \mathrm{~m} \mathrm{~s}^{-1}$
B. $165 \mathrm{~m} \mathrm{~s}^{-1}$
C. $665 \mathrm{~m} \mathrm{~s}^{-1}$
D. $410 \mathrm{~m} \mathrm{~s}^{-1}$

Answer: A
6. The angle of dip at a certain place on earth
is 60° and the magnitude of the earth's horizontal component of the magnetic field is
0.26 G . The magnetic field at the place on earth is
A. 0.13 G
B. 0.26 G
C. 0.52 G
D. 0.65 G

Answer: C

- Watch Video Solution

7. For what value of R, the current in galvanometer is zero ?

A. 5Ω
B. 2Ω
C. 7Ω
D. 1Ω

Answer: D

D Watch Video Solution

8. An unknown resistance R_{1} is connected is
series with a resistance of 10Ω. This
combination is connected to one gap of a meter bridge, while other gap is connected to another resistance R_{2}. The balance point is at

50 cm Now, when the 10Ω resistance is removed, the balanced point shifts to 40 cm Then the value of R_{1} is.
A. 20Ω
B. 10Ω
C. 60Ω
D. 40Ω

Answer: A

D Watch Video Solution
9. Six negative equal charge are placed at the vertical of a regular hexagon . 6q charge is placed at the centre of the hexagon. Find the electric dipole moment of the system.

A. zero
B. 6 qa
C. 3qa
D. qa

Answer: A

D Watch Video Solution

10. A series combination of N_{1} capacitors
(each of capacity C_{1}) is charged to potential difference 3V. Another parallel combination of
N_{2} capacitors (each of capacity C_{2}) is charged to potential difference V . The total energy
stored in both the combinations is same, The
value of C_{1} in terms of C_{2} is
A. $\frac{C_{2} N_{1} N_{2}}{9}$
B. $\frac{C_{2} N_{1}^{2} N_{2}^{2}}{9}$
C. $\frac{C_{2} N_{1}}{9 N_{2}}$
D. $\frac{C_{2} N_{2}}{9 N_{1}}$

Answer: A

D Watch Video Solution

11. The dimensional formula for magnetic flux is

$$
\begin{aligned}
& \text { A. }\left[M L^{2} T^{-2} A^{-1}\right] \\
& \text { B. }\left[M M^{2} T^{-2} A^{-1}\right] \\
& \text { C. }\left[M L^{2} T^{-1} A^{-2}\right] \\
& \text { D. }\left[M L^{-1} T^{-2} A^{-1}\right]
\end{aligned}
$$

Answer: A

D Watch Video Solution
12. In a transformer, number of turns in the primary coil are 140 and that in the secondry coil are 280 . If current i primary ciol is 4 A , then that in the secondary coil is
A. $4 A$
B. $2 A$
C. $6 A$
D. 10 A

Answer: B

D Watch Video Solution
13. Two planets of radii in the ratio $2: 3$ are made from the materials of density in the ratio $3: 2$. Then the ratio of acceleration due to gravity g_{1} / g_{2} at the surface of two planets will be
A. 1
B. 2.25
C. 0.50
D. 0.12

Answer: A

D Watch Video Solution

14. A planet in a distant solar systyem is 10
times more massive than the earth and its
radius is 10 times smaller. Given that the escape velocity from the earth is $11 \mathrm{kms}^{-1}$,
the escape velocity from the surface of the planet would be
A. $0.11 \mathrm{~km} \mathrm{~s}^{-1}$
B. $1.1 \mathrm{~km} \mathrm{~s}^{-1}$
C. $11 \mathrm{~km} \mathrm{~s}^{-1}$
D. $110 \mathrm{~km} \mathrm{~s}^{-1}$

Answer: D

D Watch Video Solution

15. A long metallic bar is carrying heat from one of its ends to the other end under steadystate. The variation of temperature θ along
the length x of the bar from its hot end is best described by which of the following figure.

C.

D.

Answer: B

- Watch Video Solution

16. In a Carnot engine, the temperature of the reservoir is $927^{\circ} \mathrm{C}$ and that of sink is $127^{\circ} \mathrm{C}$.

If the work done by the engine when it transfers heat from the reservoir to sink is
$12.6 \times 10^{6} \mathrm{~J}$. the quantity of heat absorbed by the engine from the reservoir is
A. $18.9 \times 10^{6} J$
B. $20.5 \times 10^{6} J$
C. $15.7 \times 10^{6} J$
D. $12.6 \times 10^{6} \mathrm{~J}$

Answer: A

D Watch Video Solution

17. A gas is expanded form volume $V_{0} \rightarrow 2 V_{0}$ under three different processes as shown in
the figure . Process 1 is isobaric process process 2 is isothermal and and process 3 is
adiabatic.

Let $\Delta U_{1}, \Delta U_{2}$ and ΔU_{3} be the change in internal energy of the gs in these three processes then

A. $\Delta U_{1}>\Delta U_{2}>\Delta U_{3}$
B. $\Delta U_{1}<\Delta U_{2}<\Delta U_{3}$
C. $\Delta U_{2}<\Delta U_{1}<\Delta U_{3}$

D. $\Delta U_{2}<\Delta U_{3}<\Delta U_{1}$

Answer: A

D Watch Video Solution

18. The magnitude of the magnetic field at O (centre of the circular part) due to the current

- carrying coil as shown is :

A. $\frac{\mu_{0} i}{4 \pi}\left(\frac{4 \pi}{a}+\frac{\sqrt{2}}{b}\right)$
B. $\frac{\mu_{0} i}{2 \pi}\left(\frac{3 \pi}{2 a}+\frac{\sqrt{2}}{b}\right)$
C. $\frac{\mu_{0} i}{2 \pi}\left(\frac{\pi}{3 a}+\frac{3}{\sqrt{2} b}\right)$
D. $\frac{\mu_{0} i}{4 \pi}\left(\frac{3 \pi}{a}+\frac{\sqrt{2}}{b}\right)$

Answer: D

D Watch Video Solution

19. The strength of the magnetic field around a
long straight current carrying conductor :
A. Same everywhere around the wire at any distance
B. Inversely proportional to the distance
from the wire
C. Inversely proportional to the square of
the distance from the wire
D. Directly proportional to the square of
the distance from the wire

Answer: B

D Watch Video Solution

20. A stone of density $2000 \mathrm{~kg} m^{-3}$ completely immersed in a lake is allowed to sink from rest . If the effect of friction is neglected, than after 4 seconds, the stone will reach a depth of
A. 78.4 m
B. 39.2 m
C. 19.6 m
D. 9.8 m

Answer: B

- Watch Video Solution

21. A body is projected up a smooth inclined
plane with velocity V from the point A as
shown in the figure. The angle of inclination is
45° and the top is connected to a well of diameter 40 m . If the body just manages to across the well, what is the value of V ? Length
of inclined plane is $20 \sqrt{2} m$.

A. $40 \mathrm{~m} \mathrm{~s}^{-1}$
B. $40 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$
C. $20 \mathrm{~m} \mathrm{~s}^{-1}$
D. $20 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$

Answer: D

D Watch Video Solution

22. A heavy uniform chain lies on a horizontal table-top. If the coefficient of friction between
the chain and table surface is 0.25 , then the maximum fraction of length of the chain, that
can hang over one edge of the table is
A. 20%
B. 25%
C. 35%
D. 15%

Answer: A

D Watch Video Solution

23. The system of two blocks is at rest an shown in the figure. A variable Horizontal force
is applied to the upper block. The maximum possible constant force exerted by the horizontal ground surface on the lower block

A. $3 m g \sqrt{1+\mu^{2}}$
B. $3 \mu m g$
C. $\mu m g$
D. $m g \sqrt{9+\mu^{2}}$
24. IF in a nuclear fission, piece of uranium of mass 5.0 g is lost, the energy obtained in kWh is
A. 1.25×10^{7}
B. 2.25×10^{7}
C. 3.25×10^{7}
D. 0.25×10^{7}
25. In a nuclear reactor the function of the moderator is,
A. Number of neutrons
B. Speed of neutrons
C. Escape of neutrons
D. Temperature of the reactor

Answer: B
26. THE magnitude of maximum accesleration
is π times that of maximum velocity of a
simble harmonic oscillator The time period of
the oscillator. The time period of the oscillator in second is,
A. 4
B. 2
C. 1
D. 0.5

Answer: B

D Watch Video Solution

27. A pole is floating in a liquid with 80 cm of
its length immersed. It is pushed doun a certain distance and then released. Time period of vertical oscillation is
A. $\frac{4 \pi}{7} s$
B. $\frac{3 \pi}{7} s$
C. $\frac{2 \pi}{7} s$

D. $\frac{\pi}{7} s$

Answer: A

D Watch Video Solution

28. A photo cell is receiving light from a source
placed at a distance of 1 m . If the same source
is to be placed at a distance of $2 m$, then the ejected electron
A. moves with one - fourth energy as that of the initial energy.
B. moves with one - fourth of momentum

as that of the initial momentum.

C. will be half in number.
D. will be one - fourth in number.

Answer: D

29. The frequency of incident light falling on a
photosensitive metal plate is doubled, the K.E of the emitted photo-electrons is
A. Double the earlier value
B. Unchanged
C. More than doubled
D. Less than doubled

Answer: C

D Watch Video Solution

30.

Two liquids which do not react chemically are
placed in a bent tube as shown in figure. The height of the liquids above their surface of separation are
A. directly proportional to their densities
B. inversely proportional to their densities
C. directly proportional to square of their densities
D. equal

Answer: B

D Watch Video Solution

31. A soap bubble A of radius 0.03 m and another bubble B of radius 0.04 m are brought together, so that the combined
bubble has a common interface of radius r,
then the value of r is
A. 0.24 m
B. 0.48 m
C. 0.12 m
D. 0.50 m

Answer: C
(Watch Video Solution
32. An air bubble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is
A. 8
B. 10
C. 12
D. 16
33. A ray of light passing through a prism having refractive index $\sqrt{2}$ suffers minimum devitation. It is found that the angle of incidence is double the angle of refraction within the prism. Then angle of prism is
A. 60°
B. 90°
C. 75°

D. 30°

Answer: B

D Watch Video Solution

34. A uniform meter scale of mass 1 kg is
placed on table such that a part of the scale is
beyond the edge. If a body of mass 0.25 kg is hung at the end of the scale then the minimum length of scale that should lie on the table so that it does not tilt is
A. 90 cm
B. 80 cm
C. 70 cm
D. 60 cm

Answer: D

D Watch Video Solution

35. Two solid cylinders P and Q of same mass
and same radius start rolling down a fixed
inclined plane from the same height at the
same time. Cylinder P has most of its mass concentrated near its surface, while Q has most its mass concentrated near the axis.

Which statement(s) is (are) correct?
A. Both cylinder A and B reach the ground at the same time
B. Cylinder A has larger linear acceleration than cylinder B
C. Cylinder B reaches the ground with
larger angular speed

D. Both cylinder A and B reach the ground

with the same translational kinetic energy

Answer: C

D Watch Video Solution

36. A zener diode, having breakdown voltage equal to 15 V is used in a voltage regulator circuit shown in the figure. The current
through the diode is

A. 10 mA
B. 15 mA
C. 20 mA
D. 5 mA

Answer: D
37. In an n-p-n transistor circuit, the collector current ia 10 mA . If 90% of the electrons emitted reach the collector.
A. The base current will be 1 mA
B. The base current will be -1 mA
C. The emitter current will be 9 mA
D. The emitter current will be 15 mA

Answer: A

- Watch Video Solution

38. For a rigid diatomic molecule, univerisal gas constant $R=m c_{p}$, where ${ }^{\prime} C_{p}$ ' is the molar specific heat at constant pressure and ' n ' is a number. Hence n is equal to
A. 0.2257
B. 0.4
C. 0.2857
D. 0.3557

Answer: C

- Watch Video Solution

39. A spherical liquid drop is placed on a horizontal plane. A small distrubance cause the volume of the drop to oscillate. The time period oscillation (T) of the liquid drop depends on radius (r) of the drop , density (ρ) and surface tension tension (S) of the liquid.

Which amount the following will be be a
possible expression for T (where k is a dimensionless constant)?

$$
\begin{aligned}
& \text { A. } k \sqrt{\frac{\rho r}{S}} \\
& \text { B. } k \sqrt{\frac{\rho^{2} r}{S}} \\
& \text { C. } k \sqrt{\frac{\rho r^{3}}{S}} \\
& \text { D. } k \sqrt{\frac{\rho r^{3}}{S^{2}}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

40. Angular width of central maxima in the

Fraunhofer diffraction pattern of a slit is measured. The slit is illuminated by light of wavelength $6000 \AA$. When the slit is
illuminated by light of another wavelength, the angular width decreases by 30%. The wavelength of this light will be
A. $3500 \AA$
B. $4200 \AA$
C. $4700 \AA$

D. $6000 \AA$

Answer: B

D Watch Video Solution

41. In the ideal double-slit experiment, when a
glass-plate(refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wave-length λ), the intensity at the position where the central maximum occurred previously remains
unchanged. The minimum thickness of the glass-plate is
A. λ
B. $\frac{\lambda}{3}$
C. $\frac{2 \lambda}{3}$
D. 2λ

Answer: D
(Watch Video Solution
42. A string of density $7.5 \mathrm{gcm}^{-3}$ and area of cross - section $0.2 \mathrm{~mm}^{2}$ is stretched under a tension of 20 N . When it is plucked at the midpoint, the speed of the transverse wave on the wire is
A. $116 \mathrm{~m} \mathrm{~s}^{-1}$
B. $40 \mathrm{~m} \mathrm{~s}^{-1}$
C. $200 \mathrm{~m} \mathrm{~s}^{-1}$
D. $80 \mathrm{~m} \mathrm{~s}^{-1}$

Answer: A
43. A closed organ pipe and an open organ pipe are tuned to the same fundamental frequency. The ratio of their lengths is
A. 1:1
B. 2:1
C. 1:4
D. 1:2

- Watch Video Solution

44. An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of $2 m s^{1}$. The mass per unit length of water in the pipe is $100 \mathrm{kgm}^{-1}$. What is the power of the engine?
A. 400 W
B. 200 W
C. 100 W

D. 800 W

Answer: D

D Watch Video Solution

45. Power applied to a particle varices with
time as $P=\left(3 t^{2}-2 t+1\right)$ watt, where t is in
second. Find the change in its kinetic energy between time $t=2 s$ and $t=4 s$.
A. 46 J
B. 52 J
C. 92 J
D. 104 J

Answer: A

- Watch Video Solution

