

MATHS

BOOKS - NCERT MATHS (ENGLISH)

MATRICES

Solved Example

1. If a matrix h as 28 elements, what are the possible

orders it can have?

2. In the matrix
$$A=egin{bmatrix}a&1&x\\2&\sqrt{3}&x^2-y\\0&5&rac{-2}{5}\end{bmatrix}$$
 write

(i) the order of the matrix A.

(ii) the number of elements.

(iii) elements a_{23} , a_{31} and a_1 ,

3. Construct $a_{2 imes 2}$ matrix, where

(i)
$$a_{ij}=rac{\left(i-2j
ight)^2}{2}$$
 (ii) $a_{ij}=ig|-2\hat{i}+3jig|$

4. Construct a 3 imes 2 matrix whose elements are given by $a_{ij}=e^{i\,\cdot\,x}-\sin jx.$

Watch Video Solution

5. Find the values of
$$a$$
 and b if $A = B$, where $A = [a + 43b8 - 6]$, $B = [2a + 2b^2 + 28b^2 - 56]$

Watch Video Solution

6. If possible find the sum of the matrics A and B, where

$$A = egin{bmatrix} \sqrt{3} & 1 \ 2 & 3 \end{bmatrix} ext{and} B = egin{bmatrix} x & y & z \ a & b & c \end{bmatrix}$$

7. If
$$X = \begin{bmatrix} 3 & 1 & -1 \\ 5 & -2 & -3 \end{bmatrix}$$
 and $Y = \begin{bmatrix} 2 & 1 & -1 \\ 7 & 2 & 4 \end{bmatrix}$ then find (i) x+y,

(ii) 2x-3y.

(iii) a matrix Z such that X + Y + Z is a zero matrix.

8. Find non-zero values of x satisfying the matrix equation.

$$xiggl[egin{array}{ccc} 2x & 2 \ 3 & x \end{array}iggr] + 2iggl[egin{array}{ccc} 8 & 5x \ 4 & 4x \end{array}iggr] = 2iggl[iggl(x^2+8) & 24 \ (10) & 6x \end{array}iggr]$$

9. If
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then show that
 $(A + B)(A - B) \neq A^2 - B^2$
Watch Video Solution
10. Find the value of x, if $[1x1] \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$
Watch Video Solution

11. Show that
$$A = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}$$
 satisfies the equation $x^2 - 3x - 7 = 0$. Thus, find A^{-1}

12. if
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then $A = ?$

13. FindA, if
$$\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} A = \begin{bmatrix} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{bmatrix}$$

Watch Video Solution

14. If
$$A\begin{bmatrix} 3 & -4\\ 1 & 1\\ 2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 & 2\\ 1 & 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 1\\ 2 & 3\\ 1 & 2 \end{bmatrix}$

15. If
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix}$ Find AB and BA (

if it exist)

Watch Video Solution

16. Give an example of two non-zero 2 imes 2 matrices A and

B such that AB = O.

Watch Video Solution
17. Given
$$A = \begin{bmatrix} 2 & 4 & 0 \\ 3 & 9 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{bmatrix}$, is (AB)=B'A'?

18. Solve for x and y,
$$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} 3 \\ 5 \end{bmatrix} + \begin{bmatrix} -8 \\ -11 \end{bmatrix} = 0.$$

19. If X and Y are 2 imes 2 matrices, then solve the following matrix equations for X and $Y \cdot 2X + 3Y = [2340]$,

$$3X + 2Y = [-221 - 5]$$

20. If $A = [35], B = [73], ext{ then find a non-zero matrix C}$

such that AC=BC.

Watch Video Solution

21. Give an example of three matrices A, B, C such that

AB = AC but $B \neq C$.

22. If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 3 \\ 3 & -4 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$, verfity (i) A(B+C)=AB+AC.

23. If
$$P = \left[x000y000z
ight]$$
 and $Q = \left[a000b000c
ight]$, prove that

$$PQ = [xa000yb000zc] = QP$$

Watch Video Solution

24. If [2 1 3]
$$\begin{bmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
=A, then find the value

of A.

25. If $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 4 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ then veri fy that A(B+C) = (AB+AC).

Watch Video Solution

26. If
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
 then verify that $A^2 + A = A(A + I)$, where I is 3×3 unit matrix.

27. If
$$A = \begin{bmatrix} 0 & -1 & 2 \\ 4 & 3 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 0 \\ 1 & 3 \\ 2 & 6 \end{bmatrix}$ then verify

that (i) (A')'=A (ii) (AB)'=B'A'

Watch Video Solution

28. If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 1 \\ 5 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{bmatrix}$, then varify that (i) (A-B)'=A'-B'

Watch Video Solution

29. Show that A' A and A A' are both symmetric matrices

for any matrix A.

30. Let A and B be square matrices of the order 3 imes 3 . Is

 $\left(AB
ight)^{2}=A^{2}B^{2}$? Give reasons.

Watch Video Solution

31. Show that , if A and B are square matrices such that AB=BA, then $(A + B)^2 = A^2 + 2AB + B^2$.

32. If
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix}$$
, $C = \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix}$ a=4 and b=-2, then show that (i) (a+b)B=aB+bB (ii) a(C-A)=aC-aA

(iii)
$$(bA)^T = bA^T$$

34. If
$$A = \begin{bmatrix} 0 & -x \\ x & 0 \end{bmatrix}$$
. $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $x^2 = -1$, then show that $(A+B)^2 = A^2 + B^2$.

35. Verify that
$$A^2 = I$$
, when $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$

36. If A is a square matrix, using mathematical induction prove that $\left(A^T
ight)^n=\left(A^n
ight)^T$ for all $n\in N$.

Watch Video Solution

37. Find inverse, by elementary row operations (if possible), of both following matrices. (i) $\begin{bmatrix} 1 & 3 \\ -5 & 7 \end{bmatrix}$ (ii) $\begin{bmatrix} 1 & 3 \\ -2 & 6 \end{bmatrix}$

38. If
$$\begin{bmatrix} xy & 4 \\ z+6 & x+y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$$
, then find the values of x,y,z and w.

39. If
$$A = \begin{bmatrix} 1 & 5 \\ 7 & 12 \end{bmatrix}$$
 and $B = \begin{bmatrix} 9 & 1 \\ 7 & 8 \end{bmatrix}$ then find a matrix

C such that 3A + 5B + 2C is a null matrix.

Watch Video Solution

40. If
$$A = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$$
 then find $A^2 - 5A - 4I$.

41. Find the values of a,b,c and d, if $3\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & 6 \\ -1 & 2d \end{bmatrix} + \begin{bmatrix} 4 & a+b \\ c+d & 3 \end{bmatrix}.$

Watch Video Solution

43. If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$$
 , then find $A^2 + 2A + 7I.$

44. If
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
 and $A^{-1} = A'$ then find the

value of α .

Watch Video Solution

45. If matrix
$$\begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix}$$
 is skew-symmetric matrix, then

find the values of a,b and c,

46. If
$$P(x) = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$$
, then show that $P(x). P(y) = P(x+y) = P(y). P(x).$

47. If A is square matrix such that $A^2 = A$, then show that $(I + A)^3 = 7A + I$.

Watch Video Solution

48. If A, B are square matrices of same order and B is skew-symmetric matrix, then show that A'BA is skew - symmetric.

49. Let A, B be two matrices such that they commute. Show that for any positive integer n, (i) $AB^n = B^n A$ (ii) $(AB)^n = A^n B^n$

51. Using elementary transformations (operations), find the inverse of the following matrices, if it exists

53. The matrix
$$P = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{bmatrix}$$
 is a

A. square matrix

B. diagonal matrix

C. unit matrix

D. none of these

Answer:

O Watch Video Solution

54. Total number of possible matrices of order 3×3 with each entry 2 or 0 is

A. 9

B. 27

C. 81

D. 512

Answer: D

55.
$$\begin{bmatrix} 2x+y & 4x \\ 5x-7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y-13 \\ y & x+6 \end{bmatrix}$$
 then the value of x, y is

A. x =3,y=1

B. x=2,y=3

C. x=2,y=4

D. x=3,y=3

Answer: B

56.

$$A=rac{1}{\pi}\Big[\mathrm{sin}^{-1}(\pi x)\mathrm{tan}^{-1}\Big(rac{x}{\pi}\Big)\mathrm{sin}^{-1}\Big(rac{x}{\pi}\Big)\mathrm{cot}^{-1}(\pi x)\Big]$$

and

$$B=rac{1}{\pi}\Big[-\cot^{-1}(\pi x) an^{-1}\Big(rac{x}{\pi}\Big) an^{-1}\Big(rac{x}{\pi}\Big)- an^{-1}(\pi x)\Big]$$
 , then $A-B$ is equal to I (b) 0 (c) $2I$ (d) $rac{1}{2}I$

A. I

B. 0

D.
$$\frac{1}{2}I$$

Answer:

57. If A and B are two matrices of the order 3 imes m and 3 imes n, respectively and m=n, then order of matrix (5A-2B) is (a) m imes 3 (b) 3 imes 3 (c) m imes n (d) 3 imes n

A. m imes 3

 $\text{B.}\,3\times3$

 $\mathsf{C}.\,m imes n$

D. 3 imes n

Answer: D

58. If
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 then A^2 is equal to

Answer: D

59. If matrix
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{2X2}$$
, where $a_{ij} = \begin{cases} 1 & i \neq j \\ 0 & i = j \end{cases}$, then A^2 is equal to A. I

B. A

C. 0

D. none of these

Answer:

Watch Video Solution

60. The matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 is a

A. identify

- B. symmetric matrix
- C. skew-symmetric matrix

D. none of these

Answer:

61. The matrix A = [0 - 585012 - 8 - 120] is a (a) diagonal matrix (b) symmetric matrix (c) skew-symmetric matrix (d) scalar matrix

A. diagonal matrix

B. symmetric matrix

C. skew-symmetric matrix

D. scalar matrix.

Answer:

62. If A is matrix of order m imes n and B is a matrix such that AB' and B'A are both defined , then order of matrix B

is

A. m imes m

 $\texttt{B.}\,n\times n$

 $\mathsf{C}.\,n imes m$

D. m imes n

Answer: D

63. if A and B are matrices of same order, then (AB' - BA') is a 1) null matrix 3)symmetric matrix 2) skew -symmetric matrix 4)unit matrix

A. skew-symmetric matrix

B. null matrix

C. symmetric matrix

D. unit matrix

Answer:

64. If A is a square matrix such that $A^2 = I$, then $(A - I)^{3} + (A + I)^{3} - 7A$ is equal to A. A B. I - AC. I+A D. 3A Answer: A Watch Video Solution

65. For any two matrices A and B , we have

A. AB=BA

 $\mathsf{B.}\,AB\neq BA$

 $\mathsf{C}.\,AB=O$

D. none of these

Answer:

66. On usign elementry column operation

$$C_2 \Rightarrow C_2 - 2C_1$$
 in the following matrix equation
 $\begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 01 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$, we have
A. $\begin{bmatrix} 1 & -5 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ 2 & 0 \end{bmatrix}$

$$B \begin{bmatrix} 1 & -5 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -0 & 2 \end{bmatrix}$$
$$C \begin{bmatrix} 1 & -5 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$$
$$D \begin{bmatrix} 1 & -5 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ 2 & 0 \end{bmatrix}$$

Answer:

Watch Video Solution

67. On using row operation $R_1 \Rightarrow R_1 - 3R_2$ in the following matrix equation $\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ we

have

$$A.\begin{bmatrix} -5 & -7\\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -7\\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 1 & 1 \end{bmatrix}$$
$$B.\begin{bmatrix} -5 & -7\\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & -3\\ 1 & 1 \end{bmatrix}$$

$$C \begin{bmatrix} -1 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$
$$D \begin{bmatrix} 4 & 2 \\ -5 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

Answer:

Watch Video Solution

68. Matrix is both symmetric and skew-symmetric matrix.

Watch Video Solution

69. Sum of two skew-symmetric matrices is always

Matrix.

a.....matrix.

76. If A and B are square matrices of the same order, then

(i) (AB)=.....

(ii) (KA)=..... (where, k is any scalar)

(iii) [k(A-B)]=.....

Watch Video Solution

77. If A is a skew-symmetric, then kA is a.....(where, k is

any scalar).

78. If A and B are symmetric matrices, then

(i) AB-BA is a

81. In applying one or more row operations while finding

 A^{-1} by elementary row operation we obtain all zeroes in

one or more, then A^{-1} .

Watch Video Solution

82. A matrix denotes a number

Watch Video Solution

83. Matrices of any order can be added.

84. Two matrices are equal. If they have same number of

rows and same number columns.

87. Matrix m ultiplication is commutative.

89. If A and B are two square matrices of the same order,

then A+B=B+A.

90. If A and B are two m atrices of the same order, then A-

B=B-A.

91. If A dn B be 3 imes 3 matrices the AB=0 implies (A)

$$A = 0 \text{ or } B = 0$$
 (B) $A = 0 \text{ and } B = 0$ (C)

|A| = 0 or |B| = 0 (D) |A| = 0 and |B| = 0

Watch Video Solution

92. Transpose of a column matrix is a column matrix.

93. If A and B are square matrices of the same order such

that AB=BA , then show that

symmetric, then their sum is a symmetric matrix.

Watch Video Solution

95. If A and B are any two matrices of the same order, then

(AB)=A'B'

96. If (AB)=BA, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.

97. Let A; B; C be square matrices of the same order n. If A

is a non singular matrix; then AB = AC then B = C

98. A A' is always a symmetric matrix for any matrix A.

99. If
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 4 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$ then AB and

BA are defined and equal.

100. If A is skew-symmetric matrix then A^2 is a symmetric

matrix.

101. If A; B are invertible matrices of the same order; then show that $\left(AB
ight)^{-1}=B^{-1}A^{-1}$

