©゙’ doubtnut India's Number 1 Education App

MATHS

BOOKS - NCERT MATHS (ENGLISH)

PROBABILITY

Short Answer Type Questions

1. For a loaded die, the probabilities of outcomes are given as under:

$$
P(1)=P(2)=\frac{2}{10}, P(3)=P(5)=P(6)=\frac{1}{10} \operatorname{and} P(4)=\frac{3}{10}
$$

The die is thrown two times. Let A and B be the events as defined below $A=G e t t i n g$ same number each time, $B=G e t t i n g ~ a$
total score of 10 or more. Determine whether or not A and B are independent events.

- Watch Video Solution

2. Refer to question 1 above. If the die were fair, determine whether or not the events A and B are independent.

(D) Watch Video Solution

3. The probability that atleast one of the two events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.3, evaluate $P(\bar{A})+P(\bar{B})$.
4. A bag contains 5 red marbles and 3 black marbles. Three marbles are drawn one by one without replacement. What is the probability that atleast one of the three marbles drawn be black, if the first marble is red?

- Watch Video Solution

5. Two dice are thrown together and the total score is noted.

The event E, F and G are a total 4, a total of 9 or more, and a total divisible by 5, respectively. Calculate $P(E), P(F) \operatorname{and} P(G)$ and decide which pairs of events, if any, are independent.

- Watch Video Solution

6. Explain why the experiment of tossing a coin three times is said to have Binomial distribution.

- Watch Video Solution

7. If A and B are two events such
$P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A \cap B)=\frac{1}{4}$,then find
(i) $P(A / B)$. (ii) $P(B / A)$.
(iii) $P\left(A^{\prime} / B\right)$. (iv) $P\left(A^{\prime} / B^{\prime}\right)$.

- Watch Video Solution

8. Three events A, B and C have probalities $\frac{2}{5}, \frac{1}{3}$ and $\frac{1}{2}$, respectively. If, $P(A \cap C)=\frac{1}{5}$ and $P(B \cap C)=\frac{1}{4}$, then find the values of $\mathrm{P}(\mathrm{C} / \mathrm{B})$ and $P\left(A^{\prime} \cap C^{\prime}\right)$
9. Let E_{1} and E_{2} be two independent events such that $P\left(E_{1}\right)=P_{1}$ and $P\left(E_{2}\right)=P_{2}$, describe in words of the events whose probabilities are
(i) $P_{1} P_{2}$ (ii) $\left(1-P_{1}\right) P_{2}$
(iii) $1-\left(1-P_{1}\right)\left(1-P_{2}\right)$ (iv) $P_{1}+P_{2}-2 P_{1} P_{2}$

- Watch Video Solution

10. A discrete random variable X has the probability distribution as given below

\boldsymbol{X}	0.5	1	1.5	2
$\boldsymbol{P}(\boldsymbol{X})$	k	k^{2}	$2 k^{2}$	k

(i) Find the value of k.
(ii) Determine the mean of the distribution.

(D) Watch Video Solution

11. Prove that
(i) $P(A)=P(A \cap B)+P(A \cap \bar{B})$
(ii) $P(A \cup B)=P(A \cap B)+P(A \cap \bar{B})+P(\bar{A} \cap B)$

D Watch Video Solution

12. If x is the number of tails in three tosses of a coin, then determine the standard deviation of X.

- Watch Video Solution

13. In a dice game, a player pays a stake of ₹1 for each throw of a die. She receives ₹ 5 , if the die shows a 3 , ₹ 2 , if the die shows a

1 or 6 and nothing otherwise, then what is the player's expected profit per throw over a long series of throws?

(D) Watch Video Solution

14. Three dice are thrown at the same time. Find the probability of getting three two's, if it is known that the sum of the numbers on the dice was 6

- Watch Video Solution

15. Suppose 10000 tickets are sold in a lottery each for ₹ 1 . First prize is of ₹ 3000 and the second prize is of ₹ 2000 . There are three third prizes of ₹ 500 each. If you buy one ticket, then what is your expectation?
16. A bag contrains 4 white and 5 black blls. Another bag contains 9 white and 7 black balls. A ball is transferred from the first bag to the second and then a ball is drawn at random from the second bag. Find the probability that the ball drawn is white.

D Watch Video Solution

17. A bag contains 3 white and 2 black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. find the probability that the ball drawn is white.
18. A box has 5 blue and 4 red balls. One ball is drawn at random and not replaced. Its colour is also not noted. Then, another ball is drawn at random. What is the probability of second ball being blue?

- Watch Video Solution

19. Four cards are successively drawn without replacement from
a deck of 52 playing cards. What is the probability that all the four cards are king?

- Watch Video Solution

20. If a die is thrown 5 times, then find the probability that an odd number will come up exactly three times.
21. If ten coins are tossed, then what is the probability of getting atleast 8 heads?

D Watch Video Solution

22. The probability of a man hitting man hitting target is 0.25 . If he shoots 7 times, then what is the probability of his hittiing atleast twice ?

- Watch Video Solution

23. A lot of 100 watches is known to have 10 defective watches.

If 8 watches are selected (one by one with replacement) at
random, then what is the probability that there will be atleast one defective watch ?

(D) Watch Video Solution

24. Consider the probability distribution of a random variable X

\boldsymbol{X}	0	1	2	3	4
$\boldsymbol{P}(\boldsymbol{X})$	0.1	0.25	0.3	0.2	0.15

Calculate

(i) $V\left(\frac{X}{2}\right)$ (ii) Variance of X .

D Watch Video Solution

25. The probability distribution of a random variable X is given below

(i) Determine the value of K.
(ii) Determine $P(X \leq 2)$ and $P(X>2)$.
(iii) Find $\mathrm{P}(X \leq 2)+P(X>2)$.

- Watch Video Solution

26. For the following probability distribution determine
standard deviation of the random variable X .

\boldsymbol{X}	2	3	4
$\boldsymbol{P}(\boldsymbol{X})$	0.2	0.5	0.3

- Watch Video Solution

27. A biased die is such that $\mathrm{P}(4)=\frac{1}{10}$ and other scores being equally likely. The die tossed twice. If X is the number of four seen, then find the variance of the random variable X.

- Watch Video Solution

28. A die is thrown three times. Let X be the number of twos
seen. Find the expectation of X.

- Watch Video Solution

29. Two baised dice are thrown together. For the first die $P(6)=\frac{1}{2}$, other scores being equally likely while for the second die, $P(1)=\frac{2}{5}$ and other scores are equally likely. Find the probability distribution of the number of ones seen.

(Watch Video Solution

30. Two probability distributionof the discrete random variable X and Y are given below.

\boldsymbol{X}	0	1	2	3
$\boldsymbol{P}(\boldsymbol{X})$	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
\boldsymbol{Y}	0	1	2	3
$\boldsymbol{P}(\boldsymbol{n})$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$	$\frac{1}{10}$

Prove that $E\left(Y^{2}\right)=2 E(X)$.

- Watch Video Solution

31. A factory produces bulbs. The probability that any one bulb is defective is $\frac{1}{50}$ and they are packed in 10 boxes. From a single box, find the probability that
(i) none of the bulbs is defective.
(ii) exactly two bulbs are defective.
(iii) more than 8 bulbs work properly.

- View Text Solution

32. Suppose you have two coins which appear identical in your pocket. You know that one is fair and one is 2-headed. If you take one out, toss it and get a head, what is the probability that it was fair coin?

(D) Watch Video Solution

33. Suppose that 6% of the people with blood group O are left handed and 10% of those with other blood groups are left handed, 30% of the people have blood groups 0 . If a left
handed person os selected at random, what is the probability that he/she will have blood group O ?

- Watch Video Solution

34. If two natural numbers r and s are drawn one at a time, without replacement from the set $S=\{1,2,3, \ldots . . n\}$, then find P $(r \leq p / s \leq p)$ where $\mathrm{p} \in \mathrm{S}$.

- Watch Video Solution

35. Find the probability distribution of the maximum of two scores obtained when a die is thrown twice. Determine also the mean of the distribution.
36. The random variable X can take only the values $0,1,2$. If

$$
P(X=0)=P(X=1)=p \text { and } E\left(X^{2}\right)=E[X]
$$ then find valu of p.

D Watch Video Solution

37. Find the varience of the following distribution.

\boldsymbol{X}	0	1	2	3	4	5
$\boldsymbol{P}(\boldsymbol{X})$	$\frac{1}{6}$	$\frac{5}{18}$	$\frac{2}{9}$	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{18}$

- View Text Solution

38. A and B throw a pair of dice alternately. A wins the game, if he gets a total of 6 anfd B wins, if she gets a total of 7 . If a
starts the game, then find the probabbility of winning the game by A in third throw of the pair of dice.

- View Text Solution

39. Two dice are tossed. Find whether the following two events
A and B are independent $A=\{(x, y): x+y=11\}$ and $B=\{(x, y): x \neq 5\}$, where (x, y) denotes a typical sample point.

- Watch Video Solution

40. An urn contains m white and n black balls. A ball is drawn at random and is put back into the urn along with k balls of the
same colour as that of the ball drawn. a ball is again drawn at
random. Show that the probability of drawing a white ball now does not depend on k .

(Watch Video Solution

Long Answer Type Questions

1. Three bags contain a number of red and white balls as follows Bag I: 3 red balls, Bag II: 2 red balls and 1 white balls and Bag III : 3 white balls. The probability that bag i will be chosen and a ball is selected from it is $\frac{i}{6}$, where $i=1,2,3$. What is the probability that
(i) a red ball will be selected? (ii) a white ball is selected?

(D) Watch Video Solution

2. Refer to question 41 above. If a white ball is selected, what is the probability that it come from Itbr?. (i) Bag II? (ii) Bag III?
3. A shopkepper sells three types of flower seeds A_{1}, A_{2} and A_{3}. They are sold as mixture, where the proportion are 4:4:2, respectively. The germination rates of the three types of seeds $45 \%, 60 \%$ and 35%. Calculate the probability
(i) of a randomly chosen seed to germinate.
(ii) that it will not germinate given that the seed is of type A_{3}.
(iii) that it is of the type A_{2} given that a randomly chosen seed does bot germinate

- View Text Solution

4. A letter is known to have come either from 'TATA NAGAR or
from 'CALCUTTA'. On the envelope, just two consecutive letter

- View Text Solution

5. There are two bags,one of which contains 3 black and 4 white balls while the other contains 4 black and 3 white balls. A die is thrown. If it shows up 1 or 3 , a ball is taken from the Ist bag but it shows up any other number, a ball is chosen from the II bag.

Find the probability of choosing a black ball.

D Watch Video Solution

6. There are three urns containing 2 white and 3 black balls, 3 white and 2 black balls and 4 white and 1 black balls, respectively. There is an equal probability of each urn being chosen. A ball is drawn at random from the chosen urn and it is
found to be white. Find the probability that the ball drawn was from the second urn.

- View Text Solution

7. By examining the. chest X-ray, the probability that $T B$ is detected when a person is actually suffering is 0.99 . The probability of an healthy person diagnosed to have TB is 0.001 . In a certain city, 1 in 1000 people suffers from TB. A person is selected at random and is diagnosed to have TB. What is the probability that he actually has TB?

- Watch Video Solution

8. An item is manufactured by three machines A, B and C. Out of the total member of items manufactured during a specified
period, 50% are manufactured on $\mathrm{A}, 30 \%$ on B and 20% on C .
2% of the items produced on A and 2% of items produced on B are defective and 3% of these produced on C are defective. All the items are stored at one godown. One item is drawn at random and is found to be defective. What is the probability that it was manufactured on machine A?

- Watch Video Solution

9. Let X be a discrete random variable whoose probability distribution is defined as follows.
$P(X=x)= \begin{cases}k(x+1), \text { for } \mathrm{x}=1,2,3,4 \\ 2 k x, & \text { for } \mathrm{x}=5,6,7 \\ 0, & \text { otherwise }\end{cases}$
where, k is a constant. Calculate (i) the value of k. (ii) $E(X)$.
(ii) standard deviation of X.
10. The probability distribution of a discrete random variable x is given as under

\boldsymbol{X}	1	2	4	24	34	54
$\boldsymbol{P}(\boldsymbol{X})$	$\frac{1}{2}$	$\frac{1}{5}$	$\frac{3}{25}$	$\frac{1}{10}$	$\frac{1}{25}$	$\frac{1}{25}$

Calculate
(i) the value of A , if $\mathrm{E}(\mathrm{X})=2.94$.
(ii) variance of X.

- Watch Video Solution

11. The probability distribution of a random variable x is given as under
$P(X=x)= \begin{cases}k x^{2} & x=1,2,3 \\ 2 k x & x=4,5,6 \\ 0, & \text { otherwise }\end{cases}$
where, k is a constant. Calculate
(i) $\mathrm{E}(\mathrm{X})$ (ii) $E\left(3 X^{2}\right)$
(iii) $P(X \geq 4)$

D Watch Video Solution

12. A bag contains $(2 n+1)$ coins. It is known that n of these coins have a head on both sides whereas the rest of the coins are fair. A coin is picked up at random from the bag and is tossed. If the probability that the toss results in a head is $\frac{31}{42}$, determine the value of n.

- Watch Video Solution

13. Two cards are drawn successively without replacement from a well shuffled deck of cards. Find the mean and standard variation of the random variable X, where X is the number of aces.
14. A die is tossed twice. If a success is getting an even number on a toss, then find the variance of the number of successes.

(D) Watch Video Solution

15. There are 5 cards numbered 1 to 5 , one number on one card
. Two cards are drawn at random without replacement . Let X denotes the sum of the numbers on two cards drawn. Find the mean and variance of X.

- Watch Video Solution

Objective Type Questions

1. If $\mathrm{P}(\mathrm{A})=\frac{4}{5}$ and $\mathrm{P}(A \cap B)=\frac{7}{10}$, then $P(B / A)$ is equal to
A. $\frac{1}{10}$
B. $\frac{1}{8}$
C. $\frac{7}{8}$
D. $\frac{17}{20}$

Answer: C

- Watch Video Solution

2. If $P(A \cap B)=\frac{7}{10}$ and $P(B)=\frac{17}{20}$, then $\mathrm{P}(\mathrm{A} / \mathrm{B})$ equals to
A. $\frac{14}{17}$
B. $\frac{17}{20}$
C. $\frac{7}{8}$
D. $\frac{1}{8}$

Answer:

- Watch Video Solution

3. If $P(A)=\frac{3}{10}, P(B)=\frac{2}{5}$ and $P(A \cup B)=\frac{3}{5} \quad$ then $P(B / A)+P(A / B)$ equals to
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{5}{12}$
D. $\frac{7}{12}$

Answer:

(D) Watch Video Solution

4. If $P(A)=\frac{2}{5}, P(B)=\frac{3}{10}$ and $P(A \cap B)=\frac{1}{5} \quad$ then $P\left(A^{\prime} / B^{\prime}\right) \cdot P\left(B^{\prime} / A^{\prime}\right)$ is equal to
A. $\frac{5}{6}$
B. $\frac{5}{7}$
C. $\frac{25}{42}$
D. 1

Answer:

5. If A and B are two events such that $P(A)=$ $\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A / B)=\frac{1}{4}$ then $P\left(A^{\prime} \cap B^{\prime}\right)$ isequals \rightarrow
A. $\frac{1}{12}$
B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. $\frac{3}{16}$

Answer:

- Watch Video Solution

6. If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.8$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=0.6$, then $P(A \cup B)$ is equal to
A. 0.24
B. 0.3
C. 0.48
D. 0.96

Answer:

- Watch Video Solution

7. If A and B are two events and $\mathrm{A} \neq \phi, B \neq \phi$, then
A. $P(A / B)=P(A) \cdot P(B)$
B. $\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{P(A \cap B)}{P(B)}$
C. $P(A / B) \cdot P(B / A)=1$
D. $P(A / B)=P(A) / P(B)$

Answer:

8. If A and B are events such that $P(A)=0.4, P(B)=0.3$ and $P(A \cup B)=0.5$ then $P\left(B^{\prime} \cap A\right)$ equals to
A. $\frac{2}{3}$
B. $\frac{1}{2}$
C. $\frac{3}{10}$
D. $\frac{1}{5}$

Answer:

- Watch Video Solution

9. If A and B are two events such that $P(B)=\frac{3}{5}, P(A / B)=\frac{1}{2}$ and $P(A \cup B)=\frac{4}{5}$, then $\mathrm{P}(\mathrm{A})$
equals to
A. $\frac{3}{10}$
B. $\frac{1}{5}$
C. $\frac{1}{2}$
D. $\frac{3}{5}$

Answer:

D Watch Video Solution

10. In question 64 (above), $P\left(B / A^{\prime}\right)$ is equal to
A. $\frac{1}{5}$
B. $\frac{3}{10}$
C. $\frac{1}{2}$
D. $\frac{3}{5}$

Answer:

- View Text Solution

11. If $\mathrm{P}(\mathrm{B})=\frac{3}{5}, P(A / B)=\frac{1}{2}$ and $P(A \cup B)=\frac{4}{5}$, then $P(A \cup B)^{\prime}+P\left(A^{\prime} \cup B\right)$ is equal to
A. $\frac{1}{5}$
B. $\frac{4}{5}$
C. $\frac{1}{2}$
D. 1

Answer:

12. If $P(A)=\frac{7}{13}, P(B)=\frac{9}{13}$ and $P(A \cap B)=\frac{4}{13}$, then $P\left(A^{\prime} / B\right)$ is equal to
A. $\frac{6}{13}$
B. $\frac{4}{13}$
C. $\frac{4}{9}$
D. $\frac{5}{9}$

Answer:

- Watch Video Solution

13. If A and B are suchg that events that $P(A)>0$ and $P(B) \neq 1$, then $P\left(A^{\prime} / B^{\prime}\right)$ equals to
A. $1-P(A / B)$
B. $1-P\left(A^{\prime} / B\right)$
C. $\frac{1-P(A \cup B)}{P\left(B^{\prime}\right)}$
D. $P\left(A^{\prime}\right) / P\left(B^{\prime}\right)$

Answer:

- Watch Video Solution

14. If A and B are two events with with $P(A)=\frac{3}{5}$ and $P(B)=\frac{4}{9}$, then $P\left(A^{\prime} \cap B^{\prime}\right)$ equals to
A. $\frac{4}{15}$
B. $\frac{8}{45}$
C. $\frac{1}{3}$
D. $\frac{2}{9}$

Answer:

D Watch Video Solution

15. If two events are independent, then
A. they must be mutually exclusive
B. the sum of their probabilities must be equal to 1
C. Both (a) and (b) are correct
D. none of the above is correct

Answer:

16. If A and B be two events such that $\mathrm{P}(\mathrm{A})=\frac{3}{8}, P(B)=\frac{5}{8}$ and $P(A \cup B)=\frac{3}{4}$ then $\mathrm{P}(\mathrm{A} / \mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime} / \mathrm{B}\right)$ is equal to
A. $\frac{2}{5}$
B. $\frac{3}{8}$
C. $\frac{3}{20}$
D. $\frac{6}{25}$

Answer:

- Watch Video Solution

17. If the events A and B are independent, then $P(A \cap B)$ is equal to
A. $P(A)+P(B)$
B. $P(A)-P(B)$
C. $\mathrm{P}(\mathrm{A}) \cdot P(B)$
D. $P(A) / P(B)$

Answer: C

- Watch Video Solution

18. Two events E and F are independent. If $P(E)=0.3$ and $P($
$E \cup F)=0.5$ then $P(E / F)-P(F / E)$ equals to
A. $\frac{2}{7}$
B. $\frac{3}{35}$
C. $\frac{1}{70}$
D. $\frac{1}{7}$

- Watch Video Solution

19. A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, them the probability of getting exactly one red ball is
A. $\frac{45}{196}$
B. $\frac{135}{392}$
C. $\frac{15}{56}$
D. $\frac{15}{29}$

Answer:

20. A bag containing 5 red and 3 blue balls. If 3 balls are drawn at random without replacement the probability that exactly two of the three balls were red, the first being red is
A. $\frac{1}{3}$
B. $\frac{4}{7}$
C. $\frac{15}{56}$
D. $\frac{5}{28}$

Answer:

D Watch Video Solution

21. Three persons A, B and C, fire at a target in turn, starting with A. Their probability of hitting the target are $0.4,0.3$ and
0.2 , respectively. The probability of two hits is
A. 0.024
B. 0.188
C. 0.336
D. 0.452

Answer: B

D Watch Video Solution

22. Assume that in a family, each child is equally likely to be a boy or girls .A family with three children is is choosen at random. The probability that the eldest child is a girls given that the family has at least one girls is
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{7}$

Answer: D

- Watch Video Solution

23. If a die is thrown and a card is selected at random from a deck of playing cards, than the probability of getting an even number on the die and a spade card is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{8}$
D. $\frac{3}{4}$

- Watch Video Solution

24. A box contains 3 orange balls, 3 green balls and 2 blue balls.

Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls an one blue ball is
A. $\frac{3}{28}$
B. $\frac{2}{21}$
C. $\frac{1}{28}$
D. $\frac{167}{168}$

Answer:

25. A flashlight has 8 batteries out of which 3 are dead. If two batteries selected without replacement and tested, then probability that both are dead is
A. $\frac{33}{56}$
B. $\frac{9}{64}$
C. $\frac{1}{14}$
D. $\frac{3}{28}$

Answer:

26. If eight coins are tossed together, then the probability of getting exactly 3 heads is
A. $\frac{1}{256}$
B. $\frac{7}{32}$
C. $\frac{5}{32}$
D. $\frac{3}{32}$

Answer: B

- Watch Video Solution

27. Two dice are thrown. If it is known that the sum of numbers
on the dice was less than 6 , the probability of getting a sum 3 ,
is
A. $\frac{1}{18}$
B. $\frac{5}{18}$
C. $\frac{1}{5}$
D. $\frac{2}{5}$

Answer:

- Watch Video Solution

28. Which one is not a requirement of a binomial distribution?

There are 2 outcomes for each trial There is a fixed number of trials The outcomes must be dependent on each other The probability of successes must be the same for all the trials.
A. There are 2 outcomes for each trial
B. There is a fixed number of trials
C. The outcomes must be dependent on each other
D. The probability of success must be the same for all the trials

Answer:

- Watch Video Solution

29. If two cards are drawn from a well shuffled deck of 52 playing cards with replacement, then the probability that both cards are queens, is
A. $\frac{1}{13} \cdot \frac{1}{13}$
B. $\frac{1}{13}+\frac{1}{13}$
C. $\frac{1}{13} \cdot \frac{1}{17}$
D. $\frac{1}{13} \cdot \frac{4}{51}$

- Watch Video Solution

30. The probability of guessing correctly atleast 8 out of 10 answers on a true falsetype examination is
A. $\frac{7}{64}$
B. $\frac{7}{128}$
C. $\frac{45}{1024}$
D. $\frac{7}{41}$

Answer:

31. If the probability that a person is not a swimmer is 0.3 , then the probability that out of 5 persons 4 are swimmers is
A. ${ }^{5} C_{4}(0.7)^{4}(0.3)$
B. ${ }^{5} C_{1}(0.7)(0.3)^{4}$
C. ${ }^{5} C_{4}(0.7)(0.3)^{4}$
D. $(0.7)^{4}(0.3)$

Answer:

- Watch Video Solution

32. The probability distribution of a discrete random variable X is given below

The value of k is
A. 8
B. 16
C. 32
D. 48

Answer: C

Watch Video Solution
33. For the following probability distribution.

\boldsymbol{X}	-4	-3	-2	-1	0
$\boldsymbol{P}(\boldsymbol{X})$	0.1	0.2	0.3	0.2	0.2

$E(X)$ is equal to

A. 0
B. -1
C. -2
D. -1.8

Answer:
34. For the following probability distribution.

\boldsymbol{X}	1	2	3	4
$\boldsymbol{P}(\boldsymbol{X})$	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$

$E\left(X^{2}\right)$ is equal to
A. 3
B. 5
C. 7
D. 10

Answer:

D Watch Video Solution
35. Suppose a random variable X follows the binomial distribution with parameters n and p , where ` 0
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{5}$
D. $\frac{1}{7}$

Answer:

- Watch Video Solution

36. In a college, 30% students fail in physics, 25% fail in

Mathematics and 10% in both. One student is choosen at
random. The probability that she fails in physics, if she has failed in Mathematics is
A. $\frac{1}{10}$
B. $\frac{2}{5}$
C. $\frac{9}{20}$
D. $\frac{1}{3}$

Answer:

- Watch Video Solution

37. A and B are two students. Their chances of solving a problem correctly are $\frac{1}{3}$ and $\frac{1}{4}$, respectively If the probability of their making a common error is, $1 / 20$ and the obtain the
same answer, then the probability of their answer to be correct
is
A. $\frac{1}{12}$
B. $\frac{1}{40}$
C. $\frac{13}{120}$
D. $\frac{10}{13}$

Answer:

- Watch Video Solution

38. If a box has 100 pens of which 10 are defective, then what is
the probability that out of a sample of 5 pens drawn one by one with replacement atmost one is defective?
A. $\left(\frac{9}{10}\right)^{5}$
B. $\frac{1}{2}\left(\frac{9}{10}\right)^{4}$
C. $\frac{1}{2}\left(\frac{9}{10}\right)^{4}$
D. $\left(\frac{9}{10}\right)^{5}+\frac{1}{2}\left(\frac{9}{10}\right)^{4}$

Answer:

- Watch Video Solution

True False

1. Another name for the mean of a probability distribution is expected value.
2. If A and B^{\prime} are independent events, then $P\left(A^{\prime} \cup B\right)=1-P(A) P\left(B^{\prime}\right)$.

- Watch Video Solution

3. If A and B are two events suc that $P(A)>0$ and $P(A)+P(B)>$

1, then $P(B / A) \geq 1-\frac{P\left(B^{\prime}\right)}{P(A)}$

(D) Watch Video Solution

4. If A, B and C are three independent events such that
$P(A)=P(B)=P(C)=p$,
then P (atleast two of A, B and C occur) $=3 p^{2}-2 p^{3}$

- Watch Video Solution

5. If A and B are two events such that $P(A / B)=p, P(A)=p, P(B)=\frac{1}{3}$ and $P(A \cup B)=\frac{5}{9}$, then p is equal to

- Watch Video Solution

6. If A and B are such that
$P\left(A^{\prime} \cup B^{\prime}\right)=\frac{2}{3}$ and $P(A \cup B)=\frac{5}{9}$ then $\mathrm{P}\left(\mathrm{A}^{\prime}\right)+\mathrm{P}\left(\mathrm{B}^{\prime}\right)$ is equal to

D Watch Video Solution

7. If X follows Binomial distribution with parameters $n=5, p$ and $P(X=2)=9 P(X=3)$, then p is equal to
8. If X be a random variable taking values $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ with probabilities $P_{1}, P_{2}, P_{3}, \ldots . . . P_{n}$, respectively. Then, $\operatorname{Var}(\mathrm{x})$ is equal to

- Watch Video Solution

9. Let A and B be two events. If $P(A / B)=P(A)$, then A is of B

- Watch Video Solution

