

MATHS

BOOKS - NCERT MATHS (ENGLISH)

VECTOR ALGEBRA

Short Answer Type Questions

1. Find the unit vector in the direction of sum of vectors $\overrightarrow{a} = \hat{2}i - \hat{j} + \hat{k}$ and $\overrightarrow{b} = 2\hat{j} + \hat{k}$.

2. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} - 2\hat{k}$, then

find the unit vector in the direction of

(i)
$$\overrightarrow{6b}$$
 (ii) $\overrightarrow{2a} - \overrightarrow{b}$

Watch Video Solution

3. Find a unit vector in the direction of \overrightarrow{PQ} , where P and Q have coordinates (5, 0, 8) and (3, 3, 2) respectively.

4. If \overrightarrow{a} and \overrightarrow{b} are position vectors of AandB respectively, find the position vector of a point ConBA produced such that BC = 1.5BA.

Watch Video Solution

5. Using vectors, find the value of λ such that the points $(\lambda, -10), (1, -1, 3)$ and (3, 5, 3) are

collinear.

6. A vector \overrightarrow{r} is inclined at equal angles to the three axes. If the magnitude of \overrightarrow{r} is $2\sqrt{3}$ units, then find the value of \overrightarrow{r} .

Watch Video Solution

7. A vector \overrightarrow{r} has length 21 and its direction ratios are proportional to 2, -3, 6. Find the direction cosines and components of \overrightarrow{r} , is given that \overrightarrow{r} Makes an acute angle with $x - a\xi s$.

8. Find a vector of magnitude 6, which is perpendicular to both the vectors $2\hat{i} - \hat{j} + 2\hat{k}$ and $4\hat{i} - \hat{j} + 3\hat{k}$.

Watch Video Solution

9. Find the angle between the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} - \hat{k}$.

10. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, then show that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$. Interpret the result

View Text Solution

Watch Video Solution

12. If A, B, C and D are the points with position vectors $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} - \hat{j} + 3\hat{k}$, $2\hat{i} - 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ respectively, then find the projection of \overrightarrow{AB} and \overrightarrow{CD} .

13. Using vectors, find the area of the ΔABC with

vertices A(1, 2, 3), B(2, -1, 4) and C(4, 5, -1)

14. Using vectors, prove that the parallelogram on the

same base and between the same parallels are equal

in area.

Long Answer Type Questions

1. (Cosine Formulae) if a, b, c are the lengths of the sides opposite respectively to the angles A, B, C of a triangle $ABC,\,\,$ show that (I) $\cos A=rac{b^2+c^2-a^2}{2bc}$ $\cos B=rac{c^2+a^2-b^2}{2ac}$ (ii) (iii) (i) $\cos C=rac{a^2+b^2-c^2}{2ab}$ Watch Video Solution **2.** If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} determine the vertices of a triangle, show that

 $\frac{1}{2} \left[\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \right]$ givens the vector

area of the triangle. Hence, deduce the condition that the three points $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are collinera. Also, find the unit vector normal to the plane of the

triangle.

• Watch Video Solution
3. Show that area of the parallelogram whose
diagonals are given by
$$\overrightarrow{a}$$
 and \overrightarrow{b} is $\frac{\left|\overrightarrow{a} \times \overrightarrow{b}\right|}{2}$ Also,
find the area of the parallelogram whose diagonals

are
$$2i - j + k$$
 and $i + 3j - k$.

4. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{j} - \hat{k}$ find a vector \overrightarrow{c} such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 3$.

Watch Video Solution

Objective Tpye Questions

1. The vector in the direction of the vector $\hat{i}-2\hat{j}+2\hat{k}$ that has magnitude 9 is

A.
$$\hat{i}-2\hat{j}+2\hat{k}$$

B. $rac{\hat{i}-2\hat{j}+2\hat{k}}{3}$
C. $3\Big(\hat{i}-2\hat{j}+2\hat{k}\Big)$

D. 9
$$\left(\hat{i} - 2 \hat{j} + 2 \hat{k}
ight)$$

Answer: C

Watch Video Solution

2. The position vector of the point which divides the join of points $2\overrightarrow{a} - 3\overrightarrow{b}$ and $\overrightarrow{a} + \overrightarrow{b}$ in the ratio 3:1, is

A.
$$\frac{3\overrightarrow{a} - 2\overrightarrow{b}}{2}$$

B.
$$\frac{7\overrightarrow{a} - 8\overrightarrow{b}}{7}$$

C.
$$\frac{3\overrightarrow{a}}{4}$$

D.
$$\frac{5\overrightarrow{a}}{4}$$

Answer: D

Watch Video Solution

3. The vector having initial and terminal points as (2,

5, 0) and (-3,7,4), respectively is

A.
$$-\hat{i}+12\hat{j}+4\hat{k}$$

B. $5\hat{i}+2\hat{j}+4\hat{k}$

 $\mathsf{C.}-5\hat{i}+2\hat{j}+4\hat{k}$

D. $\hat{i}+\hat{j}+\hat{k}$

Answer: Watch Video Solution 4. The angle between two vectors \overrightarrow{a} and \overrightarrow{b} with

magnitudes $\sqrt{3}$ and 4, respectively and \overrightarrow{a} . $\overrightarrow{b} = 2\sqrt{3}$

is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{5\pi}{2}$

Answer: B

5. Find the value of λ such that the vectors $\overrightarrow{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal.

A. 0

R 1

C.
$$\frac{3}{2}$$

D. $\frac{-5}{2}$

Answer: D

6. The value of λ for which the vectors $3\hat{i} - 6\hat{j} + \hat{k}$ and $2\hat{i} - 4\hat{j} + \lambda\hat{k}$ parallel, is

A.
$$\frac{2}{3}$$

B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{2}{5}$

Answer: A

7. Find the area of triangle formed by the vectors from origin to the points A and B are $\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} + \hat{k}$

A. 340

B. $\sqrt{25}$

 $\mathsf{C.}\,\sqrt{229}$

$$\mathsf{D}.\,\frac{1}{2}\sqrt{229}$$

Answer:

Answer: D

9. If
$$\left|\overrightarrow{a}\right| = 10$$
, $\left|\overrightarrow{b}\right| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 12$, then the value of $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$ is

A. 5

B. 10

C. 14

D. 16

Answer: D

10. The vectors
$$\lambda\hat{i}+\hat{j}+2\hat{k},\,\hat{i}+\lambda\hat{j}-\hat{k}\,\, ext{and}\,\,2\hat{i}-\hat{j}+\lambda\hat{k}$$
 are coplanar, if

A.
$$\lambda=-2$$

B. $\lambda=0$

$$\mathsf{C}.\,\lambda=1$$

D.
$$\lambda = -1$$

Answer:

11. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, then the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ is

A. 1

B. 3

 $\mathsf{C.}-\frac{3}{2}$

D. None of these

Answer:

12. The projection vector of \overrightarrow{a} on \overrightarrow{b} is

Answer: D

13. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{c}| = 5$, then the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. \overrightarrow{a} is

A. 0

B. 1

C. - 19

D. 38

Answer: C

14. If $\left|\overrightarrow{a}\right| = 4$ and $-3 \le \lambda \le 2$, then the range of $\left|\lambda \overrightarrow{a}\right|$ is

A. [8,0]

B. [-12,8]

C. [0,12]

D. [8,12]

Answer:

15. The number of vectors of unit length perpendicular to the vectors $\overrightarrow{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{j} + \hat{k}$ is

A. one

B. two

C. three

D. infinite

Answer:

16. The vector $\overrightarrow{a} + \overrightarrow{b}$ bisects the angle between the non-collinear vectors \overrightarrow{a} and \overrightarrow{b} , if.....

Watch Video Solution

17. If
$$\overrightarrow{r} \cdot \overrightarrow{a} = 0$$
, $\overrightarrow{r} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{r} \cdot \overrightarrow{c} = 0$ for
some non-zero vector \overrightarrow{r} , then the value of
 $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ is......

18. The vectors
$$\overrightarrow{a} = 3\hat{i} - 2\hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = -\hat{i} - 2\hat{k}$ are the

adjacent sides of a paralleogram. The angle between

its diagonals is........

21. If
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} \cdot \overrightarrow{b} \right|^2 = 144 \text{ and } \left| \overrightarrow{a} \right| = 4, \text{ then } \left| \overrightarrow{b} \right|$$
 is equal to

1

22. If
$$\overrightarrow{a}$$
 is any non-zero vector, then
 $\left(\overrightarrow{a}, \hat{i}\right)\hat{i} + \left(\overrightarrow{a}, \hat{j}\right)\hat{j} + \left(\overrightarrow{a}, \overrightarrow{k}\right)\hat{k}$ is equal to

23. State true or false: If $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right|$, then necessarily it implies $\overrightarrow{a} = \pm \overrightarrow{b}$.

Watch Video Solution

a vector whose initial point is origin.

25. State true or false: If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, then the vectors \overrightarrow{a} and \overrightarrow{b} are orthogonal

26. The formula
$$\left(\overrightarrow{a} + \overrightarrow{b}\right)^2 = \overrightarrow{a^2} + \overrightarrow{b^2} + 2\overrightarrow{a} \times \overrightarrow{b}$$

is valid for non-zero vectors $\overrightarrow{a} \; ext{ and } \; \overline{b}$.

Watch Video Solution

27. State true or false: If \overrightarrow{a} and \overrightarrow{b} are adjacent sides of a rhombus, then \overrightarrow{a} . $\overrightarrow{b} = 0$.