

PHYSICS

BOOKS - NCERT PHYSICS (ENGLISH)

ELECTROSTATIC POTENTIAL AND CAPACITANCE

1. A capacitor of $4\mu F$ is connected as shwon in

the figure. The internal resistance of the

battery is 0.5Ω . The amount of charge on the

capacitor plates will be

A. 0

- B. $4\mu C$
- C. $16\mu C$

D. $8\mu C$

Answer: D

2. A positively charged particle is released from rest in a uniform electric field. The electric potential energy of the charge.

A. remains a constant because the electric

field is uniform

B. increases because the cahrge moves

along the electric field

C. decreases because the charge moves

along the electric field

D. decreses because the charge moves

opposite to the electric field

Answer: C

Watch Video Solution

3. Figure shows some equipotential lines distributed in space. A charged object is

moved from point A to point 5.

A. The work done in Fig. (i) is the greatest

B. The work done in fig. (ii) is least

C. The work done is the same in Fig. (i), fig

(ii) and fig (iii)

D. The work done in fig. (iii) is greater than

fig. (ii) but equal to that in

Answer: C

Watch Video Solution

4. The electrostatic potential on the surface of

a charged concducting sphere is 100V. Two

statements are made in this regard

 S_1 : at any inside the sphere, electric intensity is zero.

 S_2 : at any point inside the sphere, the electrostatic potential is 100V.

- A. S_1 is true but S_2 is false.
- B. Both S_1 and S_2 are false.
- C. S_1 is true, S_2 is also true and S_1 is the

cause of S_2 .

D. S_1 is true, S_2 is also true but the statements are independent.

Answer: C

5. Equipotentials at a great distance from a collection of charges whose total sum is not zero are approximately

A. spheres

B. planes

C. paraboloids

D. ellipsoids

Answer: A

6. A parallel plate capacitor is made of two dielectric blocks in series. One of the blocks has thickness d_1 and dielectric constant K_1 and the other has thickness d_2 and dielectric constant K_2 as shown in figure. This arrangement can be through as a dielectric slab of thickness $d(=d_1+d_2)$ and effective

dielectric constant K. The K is.

A.
$$rac{K_1d_1+K_2d_2}{d_1+d_2}$$

B. $rac{K_1d_1+K_2d_2}{K_1+K_2}$
C. $rac{K_1+K_2(d_1+d_2)}{(K_1d_1+K_2d_2)}$
D. $rac{2K_1+K_2}{K_1+K_2}$.

Answer: C

Watch Video Solution

1. Consider a uniform electric field in the \hat{z} direction. The potential is a constant.

A. in all space

B. for any x for a given z

C. for any y for a given z

D. on the x-y plane for given z

Answer: B::C::D

Watch Video Solution

2. Equipotential surfaces

A. are closer in regions of large electric fields compared to regions of lower electric field

B. will be more crowded near sharp edges of a conductor.

C. will be m ore crowded near regions of

large charge densities

D. will always be equally spaced.

Answer: A::B::C

Watch Video Solution

3. The work done to move a charge along an equipotential from A to B

A. cannot be defined as
$$-\int_A^B E. \ dl$$

B. must be defined as $-\int_A^B E. \ dl$

C. is zero

D. can have a non-zero value

Answer: C

Watch Video Solution

4. In a region of constant potential,

A. the electric field is uniform

B. the electric field is zero

C. there can be no charge inside the region

D. the electric field shall necessarily charge

if a charge is placed outside the region.

Answer: B::C

Watch Video Solution

5. In the circuit shown in figure , initially key K_1 is closed and key K_2 is open. Then K_1 is opened and K_2 is closed (order is important). [Take Q'_1 and Q'_2 as charges on C_1 and C_2 and V_1 and V_2 as voltage respectively].

Then

A. charge on C_1 gets redistributed such that $V_1 = V_2$ B. charge on C_1 gets redistributed such that Q_1 ' $= Q_2$ ' C. charge on C_1 gets redistributed such that $C_1V_1 + C_2V_2 = C_1E$

D. charge on C_1 gets redistributed such that $Q_1' + Q_2' = Q$. Answer: A Watch Video Solution

6. If a conductor has a potential $V \neq 0$ and there are no charges anywhere else outside, then A. there must be charges on the surface or

inside itself

B. there cannot be any charge in the body

of the conductor

C. there must be charges only on the

surface

D. there must be charges inside the surface

Answer: A::B

Watch Video Solution

7. A parallel plate capacitor is connected to a battery as shown in figure. Consider two situations :

A : Key K is kept closed and plates of capacitors are moved apart using insulting handle.

B : Key K is opened and plates of capacitors are moved apart using insulting handle. Choose the correct options (s).

A. In A Q remains same but C changes.

B. In B V remains same but C changes

C. In A V remains same and hence Q

changes.

D. In B Q remains same and hence V changes.

Answer: C

Very Short Type Question

1. Consider two conducting spheres of radii R_1 and R_2 with $R_1 > R_2$. If the two are at the same potential, the larger sphere has more charge than the smaller sphere. State whetehr the charge density of the smaller sphere is more or less than that of the larger oe.

2. Do free electrons travel to region of higher

potential or lower potential?

Watch Video Solution

3. Can there be a potential difference between

two adjacent conductors carrying the same

charge ?

4. Can the potential function have a maximum

or minimum is free space ?

Watch Video Solution

5. A test charge q is made to move in the electric field of a point charge Q along two different closed paths. Fig. First path has sections along and perpendicular loop of the same area as the first loop. How does the work

done compare in the two cases?

Watch Video Solution

Short Answer Type Question

1. Prove that a closed equipotenitial surface with no charge within itself must enclose an equipotential volume.

2. A capacitor has some dielectric between its plates, and the capacitor is connected to a DC source. The battery is now disconnected and then the dielectric is removed. State whether the capacitance, the energy stored in it,

electric field, charge stored and the voltage

will increase ro remain constant.

3. Prove that, if an insulated, uncharged conductor is placed near a charged conductor and no other conductors are present, the uncharged body must be intermediate in potential between that of the charged body and that of infinity.

4. Calculate potential energy of a point charge -q placed along the axis due to a charge +Quniformly distributed along a ring of radius R. Sketch P.E. as a function of a axial distance z from the center of the ring, Looking at graph, can you see what happen if -q is displaced slightly from the centre of the ring (along the axis)?

View Text Solution

5. Calculate potential on the axis of a ring due to charge Q uniformly distributed along the ring of radius R.

Long Answer Type Question

1. Answer the following:

(a) State Gauss' law. Using this law, obtain the expression for the electric field due to an

infinitely long straight conductor of linear charge density λ .

(b) A wire AB of length L has linear charge density $\lambda=kx$, where x is measured from the end A of the wire.

This wire is enclosed by a Gaussian hollow surface. Find the expression for the electric flux through this surface.

2. Two point charges +Q each have been at the positions placed (-a/2, 0, 0) and (a/2, 0, 0). The locus of the points where -Q charge can be placed such that total electrostatic potential energy of the system can become equal to zero, can be represented by which of the following equations?

3. A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (U) as $\varepsilon = \alpha U$ where alpha $=2V^{-1}$. A similar capacitor with no dielectric is charged to $U_0 = 78V$. It is then is connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.

4. A capacitor is made of two circular plates of radius R each, separated by a distacne d < < R. The capacitor is connected to a constant voltage. A thin conducting disc of radius r < < Rand thickness t < < r is placed at the centre of the bottom plate. Find the minimum voltage required to lift the disc if the mass of the disc is m.

5. (a) In a quark model of elementary particles, a neutron is made of one up quarks [charge (2/3)e] and two down quarks [charges -(1/3)e]. Assume that they have a triangle configuration with side length of the order of $10^{-15}m$. Calculate electrostatic potential energy of neutron and compare it with its mass 939 MeV.

(b) Repeat above exercise for a proton which is

made of two up and one down quark.

6. Two metal spheres, one fo radius R and the other of radius 2R, both have same surface charge density s. They are brought in contact

and seprated. What will be new surface charge

densitites on them ?

7. In the circuit shown in Fig, initially K_1 is closed and K_2 is open . What are the charges on each capacitor.

Then K_1 was opened and K_2 was closed (order is important). What will be the charge on each capacitor now ? $[C=1\mu F]$

8. Calculate potential on the axis of a ring due to charge Q uniformly distributed along the ring of radius R.

Watch Video Solution

9. Two charges q_1 and q_2 are placed at (0,0,d) and (0,0,-d) respectively. Find locus of points where the potential is zero.

Watch Video Solution

10. Two equal charges q are placed at a distance of 2a and a third charge -2q is placed at the midpoint. The potential energy of the system is

Watch Video Solution