©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NCERT PHYSICS (ENGLISH)

ELECTROSTATIC POTENTIAL AND

CAPACITANCE

Mcq S

1. A capacitor of $4 \mu F$ is connected as shwon in
the figure. The internal resistance of the
battery is 0.5Ω. The amount of charge on the
capacitor plates will be

A. 0
B. $4 \mu C$
C. $16 \mu C$
D. $8 \mu C$

Answer: D

D Watch Video Solution

2. A positively charged particle is released from rest in a uniform electric field. The electric potential energy of the charge.
A. remains a constant because the electric field is uniform
B.increases because the cahrge moves
along the electric field
C. decreases because the charge moves
along the electric field
D. decreses because the charge moves
opposite to the electric field

Answer: C

D Watch Video Solution

3. Figure shows some equipotential lines distributed in space. A charged object is
moved from point A to point 5.
Fig. (i)

Fig. (ii)
$\begin{array}{ccc:c}30 \mathrm{~V} & & \\ & & & \\ & & & \\ & A & & \\ & & B & \\ \\ 10 \mathrm{~V} V & 20 \mathrm{~V} & 40 \mathrm{~V} & 50 \mathrm{~V}\end{array}$
Fig. (iii)
A. The work done in Fig. (i) is the greatest
B. The work done in fig. (ii) is least
C. The work done is the same in Fig. (i), fig
(ii) and fig (iii)
D. The work done in fig. (iii) is greater than
fig. (ii) but equal to that in

Answer: C

D Watch Video Solution

4. The electrostatic potential on the surface of
a charged concducting sphere is 100 V . Two statements are made in this regard
S_{1} : at any inside the sphere, electric intensity is zero.
S_{2} : at any point inside the sphere, the electrostatic potential is 100 V .
A. S_{1} is true but S_{2} is false.
B. Both S_{1} and S_{2} are false.
C. S_{1} is true, S_{2} is also true and S_{1} is the cause of S_{2}.
D. S_{1} is true, S_{2} is also true but the
statements are independent.

Answer: C

- Watch Video Solution

5. Equipotentials at a great distance from a
collection of charges whose total sum is not
zero are approximately
A. spheres
B. planes
C. paraboloids
D. ellipsoids

Answer: A

D Watch Video Solution

6. A parallel plate capacitor is made of two
dielectric blocks in series. One of the blocks
has thickness d_{1} and dielectric constant K_{1} and the other has thickness d_{2} and dielectric constant K_{2} as shown in figure. This arrangement can be through as a dielectric slab of thickness $d\left(=d_{1}+d_{2}\right)$ and effective
dielectric constant K. The K is.

$$
\begin{aligned}
& \text { A. } \frac{K_{1} d_{1}+K_{2} d_{2}}{d_{1}+d_{2}} \\
& \text { B. } \frac{K_{1} d_{1}+K_{2} d_{2}}{K_{1}+K_{2}} \\
& \text { c. } \frac{K_{1}+K_{2}\left(d_{1}+d_{2}\right)}{\left(K_{1} d_{1}+K_{2} d_{2}\right)} \\
& \text { D. } \frac{2 K_{1}+K_{2}}{K_{1}+K_{2}} .
\end{aligned}
$$

Answer: C

- Watch Video Solution

Mcq S More Than One Options

1. Consider a uniform electric field in the \hat{z} direction. The potential is a constant.
A. in all space
B. for any x for a given z
C. for any y for a given z
D. on the $x-y$ plane for given z

Answer: B::C::D

- Watch Video Solution

2. Equipotential surfaces
A. are closer in regions of large electric
fields compared to regions of lower
electric field
B. will be more crowded near sharp edges
of a conductor.
C. will be m ore crowded near regions of
large charge densities

D. will always be equally spaced.

Answer: A::B::C

D Watch Video Solution

3. The work done to move a charge along an equipotential from A to B
A. cannot be defined as $-\int_{A}^{B} E . d l$
B. must be defined as $-\int_{A}^{B} E . d l$
C. is zero

D. can have a non-zero value

Answer: C

D Watch Video Solution

4. In a region of constant potential,
A. the electric field is uniform
B. the electric field is zero
C. there can be no charge inside the region

D. the electric field shall necessarily charge

if a charge is placed outside the region.

Answer: B::C

D Watch Video Solution

5. In the circuit shown in figure, initially key
K_{1} is closed and key K_{2} is open. Then K_{1} is opened and K_{2} is closed (order is important).
[Take Q_{1}^{\prime} and Q_{2}^{\prime} as charges on C_{1} and C_{2} and V_{1} and V_{2} as voltage respectively].

Then

A. charge on C_{1} gets redistributed such
that $V_{1}=V_{2}$
B. charge on C_{1} gets redistributed such
that $Q_{1}{ }^{\prime}=Q_{2}{ }^{\prime}$
C. charge on C_{1} gets redistributed such
that $C_{1} V_{1}+C_{2} V_{2}=C_{1} E$
D. charge on C_{1} gets redistributed such that $Q_{1}{ }^{\prime}+Q_{2}{ }^{\prime}=Q$.

Answer: A

(Watch Video Solution

6. If a conductor has a potential $V \neq 0$ and
there are no charges anywhere else outside,
then
A. there must be charges on the surface or inside itself
B. there cannot be any charge in the body
of the conductor
C. there must be charges only on the
surface
D. there must be charges inside the surface

Answer: A::B

- Watch Video Solution

7. A parallel plate capacitor is connected to a battery as shown in figure. Consider two situations:

A : Key K is kept closed and plates of capacitors are moved apart using insulting handle.

B : Key K is opened and plates of capacitors are moved apart using insulting handle.

Choose the correct options (s).
A. In A Q remains same but C changes.
B. In B V remains same but Changes
C. In A V remains same and hence Q
changes.
D. In B Q remains same and hence V
changes.

Answer: C

- Watch Video Solution

Very Short Type Question

1. Consider two conducting spheres of radii
R_{1} and R_{2} with $R_{1}>R_{2}$. If the two are at
the same potential, the larger sphere has more charge than the smaller sphere. State whetehr the charge density of the smaller sphere is more or less than that of the larger oe.
2. Do free electrons travel to region of higher potential or lower potential?

D Watch Video Solution

3. Can there be a potential difference between two adjacent conductors carrying the same charge?
4. Can the potential function have a maximum or minimum is free space?

D Watch Video Solution

5. A test charge q is made to move in the electric field of a point charge Q along two different closed paths. Fig. First path has sections along and perpendicular loop of the same area as the first loop. How does the work
done compare in the two cases?

- Watch Video Solution

Short Answer Type Question

1. Prove that a closed equipotenitial surface with no charge within itself must enclose an equipotential volume.

D Watch Video Solution

2. A capacitor has some dielectric between its
plates, and the capacitor is connected to a DC
source. The battery is now disconnected and
then the dielectric is removed. State whether
the capacitance, the energy stored in it,
electric field, charge stored and the voltage will increase ro remain constant.

D Watch Video Solution

3. Prove that, if an insulated, uncharged conductor is placed near a charged conductor and no other conductors are present, the uncharged body must be intermediate in potential between that of the charged body and that of infinity.
4. Calculate potential energy of a point charge
$-q$ placed along the axis due to a charge $+Q$ uniformly distributed along a ring of radius R .

Sketch P.E. as a function of a axial distance z
from the center of the ring, Looking at graph, can you see what happen if $-q$ is displaced slightly from the centre of the ring (along the axis) ?
5. Calculate potential on the axis of a ring due to charge Q uniformly distributed along the ring of radius R .

D Watch Video Solution

Long Answer Type Question

1. Answer the following:
(a) State Gauss' law. Using this law, obtain the expression for the electric field due to an
infinitely long straight conductor of linear charge density λ.
(b) A wire $A B$ of length L has linear charge density $\lambda=k x$, where x is measured from the end A of the wire.

This wire is enclosed by a Gaussian hollow surface. Find the expression for the electric flux through this surface.

D Watch Video Solution

2. Two point charges $+Q$ each have been placed at the positions
$(-a / 2,0,0)$ and $(a / 2,0,0)$. The locus of
the points where $-Q$ charge can be placed such that total electrostatic potential energy of the system can become equal to zero, can be represented by which of the following equations?

Watch Video Solution

3. A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (U) as $\varepsilon=\alpha U$ where alpha $=2 V^{-1}$. A similar capacitor with no dielectric is charged to $U_{0}=78 \mathrm{~V}$. It is then is connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.

D Watch Video Solution

4. A capacitor is made of two circular plates of radius R each, separated by a distacne
$d \ll R$. The capacitor is connected to a
constant voltage. A thin conducting disc of radius $r \ll R$ and thickness $t \ll r$ is placed at the centre of the bottom plate. Find the minimum voltage required to lift the disc if the mass of the disc is m.

D Watch Video Solution

5. (a) In a quark model of elementary particles,
a neutron is made of one up quarks [charge
$(2 / 3) \mathrm{e}$] and two down quarks [charges -
$(1 / 3) e]$. Assume that they have a triangle configuration with side length of the order of $10^{-15} \mathrm{~m}$. Calculate electrostatic potential energy of neutron and compare it with its mass 939 MeV .
(b) Repeat above exercise for a proton which is
made of two up and one down quark.

- View Text Solution

6. Two metal spheres, one fo radius R and the other of radius 2 R , both have same surface charge density s. They are brought in contact
and seprated. What will be new surface charge densitites on them ?

D Watch Video Solution

7. In the circuit shown in Fig, initially K_{1} is
closed and K_{2} is open. What are the charges
on each capacitor.

Then K_{1} was opened and K_{2} was closed (order is important). What will be the charge on each capacitor now ? $[C=1 \mu F]$
8. Calculate potential on the axis of a ring due to charge Q uniformly distributed along the ring of radius R.

- Watch Video Solution

9. Two charges q_{1} and q_{2} are placed at ($0,0, \mathrm{~d}$) and ($0,0,-\mathrm{d}$) respectively. Find locus of points where the potential is zero.
10. Two equal charges q are placed at a distance of $2 a$ and a third charge $-2 q$ is placed at the midpoint. The potential energy of the system is

D Watch Video Solution

