©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NCERT PHYSICS (ENGLISH)

MAGNETISM AND MATTER

Others

1. A toroid of n turns, mean radius R and cross-
sectional radius a carries current I. It is placed
on a horizontal table taken as $x-y$ plane. Its magnetic moment \vec{M}
A. is non-zero and points in the z-direction by symmetry
B. points along the axis of the toroid ($m=m$
$\phi)$
C. is zero, otherwise there would be a field
falling as $\frac{1}{r^{3}}$ at large distances outside
the toroid
D. is pointing radially outwards.

Answer: C

- Watch Video Solution

2. The magnetic field of the earth can be modelled by that of a point dipole placed at the centre of the earth. The dipole axis makes an angle of 11.3° with the axis of the earth. At mumbai, declination is nearlyzero, then.

A. the declination varies between

$$
11.3^{\circ} C W \text { to } 11.3^{\circ} E
$$

B. the least declination is 0°
C. the plane defined by dipole axis the earth axis passes through Greenwich
D. declination averaged over the earth
must be always negative

Answer:

D Watch Video Solution

3. In a permanent magnet at room temperature.
A. magnetic moment of each molecule is
zero
B. the individual molecules have non-zero
magnetic moment which are all perfectly
aligned
C. domains are partially aligned
D. domains are all perfectly aligned

Answer:

D Watch Video Solution

4. Consider the two idealized systems: (i) a parallel plate capacitor with large plates and small separation and (ii) a long solenoid of length $L \gg R$, radius of cross-section. \ln (i)
\vec{E} is ideally treated as a constant between plates and zero outside. In (ii) magnetic field is constant inside the solenoid and zero outside.

These idealised assumptions, however, contradict fundamental law as below:
A. case i contradicts Gauss law for
electrostatic fields
B. case ii contradicts Gauss' law for magnetic fields
C. case i agrees with $\oint E$. Dil=0.
D. case ii contradicts $\oint H, \mathrm{dil}=I_{e n}$

Answer:

5. A paramagnetic sample shows a net magnetisation of $8 A m^{-1}$ when placed in an external magnetic field of $0 \cdot 6 T$ at a temperature of $4 K$. When the same sample is
placed in an external magnetic field of $0 \cdot 2 T$ at a temperature of $16 K$, the magnetisation will be
A. $\frac{32}{3} A m^{-1}$
B. $\frac{2}{3} A m^{-1}$
C. $6 \mathrm{Am}^{-1}$

D. $2.4 A m^{-1}$

Answer:

D Watch Video Solution

6. S is the surface of a lump of magnetic material.
A. Lines of B are necessarily continous across S
B. Some lines of B must be discontinous across S
C. Lines of H are necessarily continous across S
D. Lines of H cannot all be continous across

S

Answer:
(Watch Video Solution

7. The primary origin(s) of magnetism lies in

A. atomic currents
B. pauli exlucison principle
C. polar nature of molecules
D. intrinsic spin of electrons

Answer:

D Watch Video Solution

8. A long solenoid has 1000 turns per metre and carries a current of $1 A$. It has a soft iron
core of $\mu_{r}=1000$. The core is heated beyond the Curie temperature, T_{c}.

A. The H field in the solenoid is (nearly)

unchanged but the B field decreases
drastically
B. The H and B fields in the solenoid are
nearly unchanged
C. The magnetisation in the core reverses
direction.
D. The magnetisation in the core
diminishes by a factor of about 10^{8}

Answer:

D Watch Video Solution
9. Essential difference between electrostatic shielding by a conducting shell and magnetostatic shielding is due to
A. electrostatic field lines can end on charges and conductors have free charges
B. lines of B can also end but conductors
cannot end them
C. lines of B cannot end on any material
and perfect shieldin g is not possible
D. shells of high permeability can be used
to divert lines of B from the interior region.

Answer:

D Watch Video Solution

10. Let the magnetic field on earth be modelled by that of a point magnetic dipole at
the centre of earth. The angle of dip at a point on the geographical equator
A. is always zero
B. can be zero at specific points
C. can be positive or negative
D. is bounded.

Answer:

D Watch Video Solution

11. A proton has spin and magnetic moment
just like an electron. Why then its effect is neglected in magnetism of materials?

- Watch Video Solution

12. A permanent magnet in the shape of a thin cylinder of length 10 cm has $M=10^{6} \mathrm{~A} / \mathrm{m}$.

Calculate the magnetisation current I_{M}.

D Watch Video Solution

13. Explain quantitatively the order of magnitude difference between the diamagnetic susceptibility of
$N_{2}\left(-5 \times 10^{-9}\right)($ at STP $)$ and $C u\left(-10^{-5}\right)$.
14. From molecular view point, discus the temperature dependence of susceptibility for diamagnetism, paramagnetism and ferromagnetism.

D Watch Video Solution

15. A ball of superconducting material is dipped in liquid nitrogen and placed near a bar magnet. (i) In which direction will it move?
(ii) What will be the direction of it's magnetic moment?

- Watch Video Solution

16. Verify the Gauss's law for magnetic field of a point dipole of dipole moment M at the origin for the surface which is a sphere of radius R .
17. Three identical bar magnets are rivetted together at centre in the same place as shown
in figure. This system is placed at rest in a slowly varying magnetic field. It is found that the system of magnets does not show any motion. The north-south poles of one magnet are shown in figure. Determine the poles of
the remaining two.

D Watch Video Solution
18. Suppose we want to verify the analogy between electrostatic and magnetostatic by an explicit experiment. Consider the motion of (i) electric dipole \vec{p} in an electrostatic field \vec{E} and (ii) magnetic dipole \vec{M} in a magnetic field \vec{B}. Write down a set of conditions on \vec{E}, \vec{B}, \vec{p}, \vec{M} so that the two motions are verified to be identical. (Assume identical initial conditions).

D Watch Video Solution

19. A bar magnet of magnetic moment M and moment of inertia I (about centre, perpendicular to length) is cut into two equal pieces, perpendicular to length. Let T be the period of oscillation of the original magnet about an axis through the mid point, perpendicular to length, in a magnetic field \vec{B}. What would be the similar period T^{\prime} for each piece?
20. Use i the Ampere's law for H and i continuity of lines of B, to conclude that inside
a bar magnet, (a) lines of H run from the N pole to S-pole while (b) lies of B must run from the S-pole to N -pole.

D Watch Video Solution

21. Verify the Ampere's law for magnetic field of a point dipole moment $\vec{M}=M \hat{k}$. Take C as
the closed curve running clockwise along (i) z^{-} axis from $z=a>0$ to $z=R$, (ii) along the
quarter circle of radius R and centre at the
origin, in the first quadrant of $x-z$ plane, (iii)
along the x-axis from $x=R$ to $x=a$, and (iv)
along the quarter circle of radius a and centre at the origin in the first quadrant of $x-y$ plane.

D View Text Solution

22. What are the dimensions of χ, the magnetic susceptibility? Consider an H-atom.

Guess an expression for χ upto a constant by constructing a quantity of dimensions of χ,
out of parameters of the atom: e, m, v, R and
μ_{0}. Here, m is the electronic mass, v is electronic velocity, R is Bohr radius. Estimate the number so obtained and compare with the value of $\mid \chi\left\lceil 10^{-5}\right.$ for any solid material.

D Watch Video Solution

23. Assume the dipole model of earth's magnetic field B which is given by $B_{V}=$ vertical component of magnetic field $=\frac{\mu_{0}}{4 \pi} \frac{2 M \cos \theta}{r^{3}}$, $B_{H}=$ Horizontal component of magnetic field
$=\frac{\mu_{0}}{4 \pi} \frac{\sin \theta M}{r^{3}}, \theta=90^{\circ}$-latitude as measured
from magnetic equator.
Find loci of points for which (i) $|\vec{B}|$ is minimum, (ii) dip angle is zero, and (iii) dip angle is $\pm 45^{\circ}$.

- Watch Video Solution

24. Consider the plane S formed by the dipole axis and the axis of earth. Let P be point on the magnetic equator and in S. Let Q be the point of intersection of the geographical and
magnetic equators Obtain the declination and dip angles at P and Q .

D Watch Video Solution

25. There are two current carrying planar coils made each from identical wires of length L. C_{1} is the circular (radius R) and C_{2} is square (side
a). They are so constructed that they have same frequency of oscillation when they are placed in the same uniform \vec{B} and carry the same current i. Find a in terms of R.
