©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NCERT PHYSICS (ENGLISH)

MOVING CHARNGES AND

MAGNETISM

Mcqs

1. Two charged particles traverse identical
helical paths in a completely opposite sense in
a uniform magnetic field $\vec{B}=B_{0} \widehat{K}$
A. They have equal z-components of

momenta

B. They must have equal charges.
C. They necessarily represent a particle,
anti partile pair
D. The charge to mass ratio satisfty.

Answer: D

2. Biot-Savart law indicates that the moving electrons (velocity \vec{v}) produce a magnetic field \vec{B} such that
A. B is perpendicular to V
B. B is parallel to V
C. it obeys inverse cube law
D. It is along the line joining the electron
and point of observation.

Answer: A
3. A current carrying circular loop of radius R is placed in the $x-y$ plane with centre at the origin. Half of the loop with $x>0$ is now bent so that it now lies in the $y-z$ plane.
A. The magnitude of magnetic moment now diminishes.
B. The magnetic moment does not change.
C. The magnitude of B at $(0,0 z), z>R$ increases.

D. The magnitude of B at $(0,0, \mathrm{z}), z \gg R$

 is unchanges.
Answer: A

D Watch Video Solution

4. An electron is projected with uniform velocity along the axis of a current carrying long solenoid. Which of the following is true?
A. The electron will be accelerated along
the axis
B. The electron path will be circular abou
the axis.
C. the electronw ill experience a force at
45° to the xis and hence execute a helical path.
D. The electron will continue to move with
uniform velocity along the axis of the solenoid.

Answer: D

- Watch Video Solution

5. In a cyclotron, a charged particle

A. undergoes acceleration all the time.
B. Speeds up between the dees because of
the magnetic field
C. speeds up in a dee.

D. slows down within a dee and speeds up

 between dees.
Answer: A

D Watch Video Solution

6. A circular current loop of magnetic moment
M is in an arbitrary orientation in an external magnetic field \vec{B}. The work done to rotate the loop by 30° about an axis perpendicular to its plane is :
A. MB
B. $\sqrt{3} \frac{M B}{2}$
C. $\frac{M B}{2}$
D. zero

Answer: A

- Watch Video Solution

7. The gyro-magnetic ratio of an electron in an

H-atom, according to Bohr model, is
A. independent of which orbit it is in
B. negative
C. positive
D. increases with the quantum number n.

Answer: A

- Watch Video Solution

Mcqs More Than One Options

1. Consider a wire carrying a steady current, I placed in a uniform magnetic field \vec{B} perpendicular to its length. Consider the charges inside the wire. It is known that magnetic forces do not work. This implies that
A. Motion of charges inside the conductor
is unaffected by B, since they do not
aborb energy
B. some charges inside the wire move to
the surface as a result of B
C. if the wire moves under the influence of B, no work is done by the force.
D. If the wire moves under the influence of

B, no work is done by the magnetic force
on the ions, assumed fixed within the
wire.

Answer: B::D

D Watch Video Solution

2. Two identical current carrying coaxial loops, carry current I in an opposite sense. A simple amperian loop passes through both of them once. Calling the loop as C ,
A. $\oint B . d l=2 \mu_{0} I$
B. The value of $\oint B . d l$ is independent of sense of C .
C. There may be z point of C where, B and dl are perpendicular
D. B vanishes everywhere on C.

Answer: B::C

D Watch Video Solution

3. A cubical region of space is filled with some uniform electric and magnetic fields. An electron enters the cube across one of its faces with velocity \vec{v} and a positron enters via opposite face with velocity $-\vec{v}$. At this instant,
A. the electric forces on both the particles
cause identical accelerations
B. the magnetic forces on both the particles cause equal acceleration.
C. Both particles gain or loose energy at
the same rate
D. the motion of the centre of mass (CM) is
determined by B alone.

Answer: B::C::D

4. A charged particle would continue to move with a constant velocity in a region wherein,
A. $E=0, B \neq 0$
B. $E \neq 0, B \neq 0$
C. $E \neq 0, B=0$
D. $E=0, B=0$

Answer: A::B::D

- Watch Video Solution

Very Short Answer Type Question

1. Verify that the cyclotron frequency
$\omega=e B / m$ has the correct dimensions of
$[T]^{-1}$.

D Watch Video Solution

2. Show that a force that does no work must be a velocity dependent force.
3. The magnetic force depends on \vec{v} which depends on the inertial frame of reference.

Does then the magnetic force differ from inertial frame to frame? Is it reasonable that the net acceleration has a different value in different frames of reference?

- Watch Video Solution

4. Describe the motion of a charged particle in
a cyclotron if the frequency of the radio
frequency $(r f)$ field were doubled.

D Watch Video Solution

Two long wires carrying current I_{1} and I_{2} are arranged as shown in figure the one carrying
current I_{1} is along is the x-axis. The other carrying current I_{2} is along a line parallel to the y-axis given by $x=0$ and $z=d$. Find the force exerted at O_{2} because of the wire along the xaxis.

- Watch Video Solution

Short Answer Type Question

1. A current carrying loop consists of 3 identical quarter circles of radius R, lying in
the positive quadrants of the $x-y, y-z$ and $z-x$ planes with their centres at the origin, joined together. Find the direction and magnitude to \vec{B} at the origin.

- Watch Video Solution

2. A charged particle of charge e and mass m is moving in an electric field \vec{E} and magnetic field \vec{B}. Construct dimensionless quantities and quantities of dimention $[T]^{-1}$.
3. An electron enters with a velocity $\vec{v}=v_{0} \hat{i}$ into a cubical region (faces parallel to coordinate planes) in which there are uniform electric and magnetic fields. The orbit of the electron is found to spiral down inside the cube in plane parallel to the x-y plane. Suggest a configuration of fields \vec{E} and \vec{B} that can lead to it.
4. Do magnetic forces obey Newton's third law. Verify for two current elements $d \vec{l}_{1}=d l \hat{i}$ located at the origin and $d \vec{l}_{2}=d l \hat{j}$ located at ($0, R, 0$). Both carry current I .

D Watch Video Solution

5. A multirange voltmeter can be constructed by using a galvanometer circuit as shown in figure. We want to construct a voltmeter that can measure $2 \mathrm{~V}, 20 \mathrm{~V}$ and 200 V using a
galvanometer of resistance 10Ω and that produces maximum deflection for current of $1 m A$. Find R_{1}, R_{2} and R_{3} that have to be
 used.
6. A long straight wire carrying current of $25 A$
rests on a table as shown in figure. Another wire PQ of length 1 m , mass $2 \cdot 5 g$ carries the same current but in the opposite direction.

The wire PQ is free to slide up and down. To what height will PQ rise?

D Watch Video Solution

Long Answer Type Questions

1. A rectangular coil $A B C D$ is hung from one side of a balance as shown in higure. A 500 g mass is added to the other arm to balance the weight of the coil. A current of 9.8 A is passed through the coil and a constant magnetic field of 0.4 T acting inward (in xz plane) is switched on such that only arm CD of length 1.5 cm lies
in the field. The additional mass m must be
added to regain the balance is

- Watch Video Solution

2. A rectangular conducting loop consists of two wires on two opposite sides of length I joined together by rods of length d. The wires
are each of the same material but with crosssections differing by a factor of 2 . The thicker wire has a resistance R and the rods are of low resistance, which in turn are connected to a constant voltage source V_{0}. The loop is placed in a uniform magnetic field B at 45° to its plane. Find τ, the torque exerted by the magnetic field on the loop about an axis through the centres of rods.

D Watch Video Solution

3. An electron and a position are released from
$(0,0,0)$ and $(0,0,1 \cdot 5 R)$ respectively, in a
uniform magnetic field $\vec{B}=B_{0} \hat{i}$, each with an equal momentum of magnitude $p=e B R$.

Under what conditions on the direction of momentum will the orbits be non-intersecting circles?

- Watch Video Solution

4. A uniform conducting wire of length $12 a$ and resistance R is wound up as a current carrying coil in the shape of (i) an equilateral triangle of side a, (ii) a square of sides a and,
(iii) a regular hexagon of sides a. The coil is connected to a voltage source V_{0}. Find the magnetic moment of the coils in each case.

D Watch Video Solution

5. Consider a circular current-carrying loop of radius R in the $\mathrm{x}-\mathrm{y}$ plane with centre at origin.

Considerthe line integral
$\zeta(L)=\left|\int_{-L}^{L} \vec{B} \cdot d \vec{l}\right|$ taken along z-axis.
(a) Show that $\zeta(L)$ monotonically increases with L.
(b) Use an appropriate Amperian loop to show
that $\zeta(\infty)=\mu_{0} I$, where I is the current in the wire.
(c) Verify directly the above result.
(d) Suppose we replace the circular coil by a square coil of sides R carrying the same
current I. What can you say about $\zeta(L)$ and $\zeta(\infty) ?$

D View Text Solution

6. A multirange current meter can be constructed by using a galvanometer circuit as shown in figure. We want a current meter that can measure $10 \mathrm{~m} A, 100 \mathrm{~m} A$ and $1 A$ using a galvanometer of resistance 10Ω and that produces maximum deflection for current of
$1 m A$. Find S_{1}, S_{2} and S_{3} that have to be used.

- View Text Solution

7. Five long wires A, B, C, D and E, each carrying current I are arranged to form edges of a pentagonal prism as shown in figure. Each carries current out of the plane of paper.
(a) What will be magnetic induction at a point on the axis O ? Axis is at a distance R from each wire.
(b) What will be the field if current in one of the wires (say A) is switched off?
(c) What if current in one of the wire (say) A is reversed?

