©゙"doubtnut India's Number 1 Education App

PHYSICS

BOOKS - NCERT PHYSICS (ENGLISH)

RAY OPTICS AND OPTICAL INSTRUMENTS

Multiple Choice Questions

1. A ray of light incident at an angle θ on a refracting face of a prism emerges from the other face normally. If the angle of the prism is 5° and the prism is made of a material of refractive index 1.5 , the angle of incidence is.
A. 7.5°
B. 5°
C. 15°
D. 2.5°

Answer:

- Watch Video Solution

2. A short pulse of white light is incident from air to a glass slab at normal incidence. After travelling through the slab, the first color to emerge is.
A. blue
B. green
C. violent
D. red

- Watch Video Solution

3. An object approaches a convergent lens from the left of the lens with a uniform speed $5 m / s$ and stops at the focus. The image.
A. moves away from the less with an uniform speed $5 / \mathrm{s}$
B. moves away from the less with an uniform acceleration
C. moves away from the less with a non-uniform acceleration
D. moves towards the lens with a non-uniform acceleration

Answer:

4. A passenger in an aeroplane shall
A. never see a rainbow
B. may see a primary and a secondary rainbow as concentric circles
C. may see a primary and a secondary rainbow as concentric arcs
D. shall never see a secondary rainbow

Answer:

- Watch Video Solution

5. You are given four sources of light each one providing a light of a single color-red, blue, green and yellow. Suppose the angle of refraction for a beam of yellow light corresponding to a
particular angle of incidence at the interface of two media is 90°.

Which of the following statements is correct it the source of yellow light is replaced with that of other lights without changing the angle of incidence?
A. The beam of red light would undergo total internal reflection
B. The beam of red light would bend towards normal while it gets refracted through the second medium
C. The beam of blue would undergo total internal reflection
D. The beam of green light would bend away from the normal as it gets refracted through the second medium

Answer:

6. The phenomena involved in the reflected of radio waves by ionosphere is similar to.
A. reflection of light by a plane mirror
B. total internal reflection of light in air during a mirage
C. dispersion of light by water molecules during the formation of a rainbow
D. scattering of ligt by the particles of air

Answer:

- Watch Video Solution

7. The direction of ray of light incident on a concave mirror is shown by $P Q$ while directions in which the ray would travel after reflection is shown by four rays marked $1,2,3$ and 4 , Fig. Which
of the four rays correctly shows the direction of reflected ray?

A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

8. The optical density of turpentine is higher than that of water, while its mass density is lower. Fig. shows a layer of turpentine floating over water in a container. For which one of the four rays incident on turpentine in Fig., the path shows is correct ?

A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

9. A car is moving with a constant speed of $60 \mathrm{kmh}^{-1}$ on a straight road. Looking at the rear view mirror, the driver finds that the car following him is at a distance of 100 m and is approaching with a speed of $5 \mathrm{kmh}^{-1}$. In order to keep track of the car in the rear, the driver begins to glane alternatively at the rear and side mirror of his car after every $2 s$ till the other car overtakes. If the two cars were maintaining their speeds, which of the following statement (s) is/are correct ?
A. The speed of car in the rear is $65 \mathrm{~km} / \mathrm{h}^{-1}$
B. In the side mirror, the car in the rear would appear to approach with a speed of $5 k m h^{-1}$ to the driver of the leading car
C. In the rear view mirror, the speed of the approaching car
would appear to decrease as the distance between the cars
decreases
D. In the side mirror, the speed of the approaching car would appear to increases as the distance between the cars decreases

Answer:

- Watch Video Solution

1. There are certain materials developed in laboratories which have a negative refractive index, Fig. A ray incident from air (medium 1) into such a medium (medium 2) shall follow a path given by
(a)

A.

B.
C.
D.

Answer:

- Watch Video Solution

2. Consider an extended object immersed in water contained in a plane trough. When seen from close to the edge of the trough, the object looks distorted because.
A. the apparent depth of the points close to the edge are nearer the surface of the water compared to the points away from the edge
B. the angle subtended by the image of the object at the eye is smaller than the actual angle subtended by the object in
C. some of the points of the object far away from the edge may not be visible because of total internal relfection
D. water in a trough acts as lens and magnifies the object

Answer:

- Watch Video Solution

3. A rectangular block of glass $A B C D$ has a refractive index 1.6.

A pin is placed midway on the face $A B$, Fig. When observed from
the face $A D$, the pin shall.

A. appear to be near A
B. appear to be near D
C. appear to be near at the centre of $A D$
D. not be seen at all

- Watch Video Solution

4. Between the primary and secondary rainbows, there is a dark band known as Alexander's dark band. This is because
A. light scattered into this region interfere destructively
B. there is no light scattered into this region
C. light is absorbed in this region
D. angle made at the eye by the scattered rays with respect to
the incident light of the sun lies between approximately
42° and 50°

Answer:

5. A magnifying glass is used, as the object to be viewed can be brought closer to the eye than the normal near point. This results in.
A. a larger angle to be subtended by the object at the eye and hence, viewed in greater detail
B. the formation of a virtual erect image
C. increase in the field of view
D. infinite magnification at the near point

Answer:

- Watch Video Solution

6. An astronomical refractive telescope has an objective of focal length 20 m and an eyepiece of focal length 2 cm .Then the magnification
A. The length of the telescope tube is 20.2 m
B. The magnification is 1000
C. The image formed is inverted
D. An objective of a larger aperture will increase the brightness and reduce chromatic aberration of the image

Answer:

1. Will the focal length of a lens for red light be more, same or less than that for blue light?

- Watch Video Solution

2. The near vision of an average person is 25 cm . To view an object with an angular magnification of 10 , what should be the power of the microscope?

D Watch Video Solution

3. An unsymmeterical double convex thin lens forms the image of a point object on its axis. Will the position of the image change if the lens is reversed?
4. Three immiscible liquids of densities $d_{1}>d_{2}>d_{3}$ and refractive indices $\mu_{1}>\mu_{2}>\mu_{3}$ are put in a beaker. The height of each liquid column is $\frac{h}{3}$. A dot is made at the bottom of the beaker. For near normal vision, find the apparent depth of the dot.

D Watch Video Solution

5. The angle of minimum deviation for a glass prism with $\mu=\sqrt{3}$ equals the refracting angle of the prism. What is the angle of the prism?

- Watch Video Solution

6. A short object of length L is placed along the principal axis of a concave mirror away from focus. The object distance is u. If the
mirror has a focal length f, what will be the length of the image
? You may take $L \ll|u-f|$.

- Watch Video Solution

7. A circuilar disc of radius ' R ' is placed co-axially and horizontally inside and opaque hemispherical bowl of radius 'a', Fig. The far edge of the disc is just visible when viewed from the edge of the bowl. The bowl is filled with transparent liquid of refractive index μ and the near edge of the dise becomes just visible. How far below the top of the bowl is the disc placed ?

8. A thin convex lens of focal length 25 cm is cut into two pieces 0.5 cm above the principal axis. The top part is placed at $(0,0)$ and an object placed at $(-50 \mathrm{~cm}, 0)$. Find the coordinates of the image.

- Watch Video Solution

9. In may experimental set-ups the source and screen are fixed at
a distance say D and the lens is movable. Show that there are two positions for the lens for which an image is formed on the
screen. Find the distance between these points and the ratio of the image sizes for these two points.
10. A jar of height h is filled wih a transparent liquid of refractive index μ, Fig. At the centre of the jar on the botom surface is a dot. Find the minimum diameter of a disc, such that when placed on the top surface symmetrically about the centre, the dot is invisible.

11. A myopic adult has a far point at 0.1 m . His power of accomodation is 4 diopters.
(i) What power lenses are required to see distant objects?
(ii) What is his near point without glasses?
(iii) What is his near point with glasses ? (Take the image distance from the lens of the eye to the retina to be 2 cm).

- Watch Video Solution

12. Show that for a material with refractive index $\mu \geq \sqrt{2}$, light incident at any angle shall be guided along a length perpendicular to the incident face.

- Watch Video Solution

13. The mixture of a pure liquid and a solution in a along vertical column (i.e., horizontal dimensions \ll vertical dimensions) produces diffusion of solute particles and hence a refractive index gradient along the vertical dimension. A ray of light entering the column at right angles to the vertical is deviated from its original path. Find the deviation in travelling a horizontal distance $d \ll h$, the height of the column.

- Watch Video Solution

14. If light passes near a massive object, the gravitational interaction causes a bending of the ray. This can be thought of as happening due to a change in the effective refractive index of the medium given by $n(r)=1+2 G M / r c^{2}$
where r is the distance of the point consideration from the centre of the mass of the massive body, G is the universal gravitational constant, M the mass of the body and c the speed
of light in vacuum. Considering a spherical object, find the deviation of the ray from the original path as it grazes the object.

- Watch Video Solution

15. An infinitely long cylinder of radius R is made of an usal exotic material with refractive index (-1), Fig. The cylinder is placed between two planes whose normals are along the y direction. The center of the cylinder O lies along the y-axis. A narrow laser beam is directed along the y-direction from the lower plate. The laser source is at a horizontal distance x from the diameter in the y direction. Find the range of x such that light emmited from the lower plane does not reach the upper plane.
16. (i) Consider a thin lens placed between a source (S) and an observer (O), Fig. Let the thickness of the lens vary as $w(b)=w_{0}-\frac{b^{2}}{\propto}$, where b is the vertical distance from the pole. w_{0} is a constant. Using Fermat's principle, i.e., the time of transit for a ray between the source and observer is an extremism, find the condition that al paraxial rays starting from the source will converge at a point O on the axis. Find the focal length.
(ii) A gravitational lens may be assumed to have a varying width of the form
$w(b)=k_{1} \operatorname{In}\left(\frac{k_{2}}{b}\right) b_{\min }<b<b_{\max } w(b)=k_{1} \operatorname{In}\left(\frac{k_{2}}{b_{\text {min }}}\right) b<b_{\text {min }}$
Show that an observer will see an image of a point object as a ring about the center of the lens with an angular radius
$\beta=\sqrt{\frac{(n-1) k_{1} \frac{u}{v}}{u+v}}$.
