

PHYSICS

BOOKS - PRINCETON PHYSICS (ENGLISH)

WORK, ENERGY, AND POWER

1. You slowly lift a book of mass 2 kg at constant velocity a distance of 3m. How much

work did you do on the book?

2. A 30 kg crate is moved along a horizontal floor by a warehouse worker who's pulling on it with a rope that makes a 60° angle with the horizontal. The tension in the rope is 200 N and the crate slides a distance of 10 m. how much work is done on the crate by the worker?

3. A box slides down an inclined plane (incline angle = 40°). The mass of the block, m, is 40 kg, the coefficient of kinetic friction between the box and the ramp, μ_k , is 0.3, and the length of the ramp, d, is 10m. (Use: $\sin 40^{\circ} = 0.6$ and $\cos 40^{\circ} = 0.8$).

Q. how much work is done by gravity?

4. A box slides down an inclined plane (incline angle = 40°). The mass of the block, m, is 40 kg, the coefficient of kinetic friction between the box and the ramp, μ_k , is 0.3, and the length of the ramp, d, is 10m. (Use: $\sin 40^{\circ} = 0.6$ and $\cos 40^{\circ} = 0.8$).

Q. How much work is done by the normal force?

5. A box slides down an inclined plane (incline angle = 40°). The mass of the block, m, is 40 kg, the coefficient of kinetic friction between the box and the ramp, μ_k , is 0.3, and the length of the ramp, d, is 10m. (Use: $\sin 40^{\circ} = 0.6$ and $\cos 40^{\circ} = 0.8$).

Q. How much work is done by friction?

6. A box slides down an inclined plane (incline angle = 40°). The mass of the block, m, is 40 kg, the coefficient of kinetic friction between the box and the ramp, μ_k , is 0.3, and the length of the ramp, d, is 10m. (Use: $\sin 40^{\circ} = 0.6$ and $\cos 40^{\circ} = 0.8$).

Q. What is the total work done?

7. The force exerted by a spring when it's displaced by x from its natural length is given by the equation F(x) = -kx, where k is a positive constant. What is the work done by a spring as it pushes out from $x = -x_2$ to $x = -x_1$ (where $x_2 > x_1$)?

View Text Solution

8. What is the kinetic energy of a baseball (mass=0.15kg) moving with a speed of 20 m/s?

10. An object starting from rest has two forces acting on it: one performing 40 J of work and the other (friction) performing -20J. What is the final kinetic energy of this object?

11. A pool cue striking a stationary billiard ball (mass=0.25kg) gives the ball a speed of 2 m/s. If the force of the cue on the ball was 25N, over what distance did this force act?

12. A stuntwoman (mass=60kg) scales a 20meter-tall rock face. What is her gravitational potential energy (relative to the ground)?

13. A ball of mass 2 kg is gently pushed off the edge of a tabletop that is 1.8 m above the floor. Find the speed of the ball as it strikes the floor.

14. A box is projected up a long ramp (incline angle with the horizontal= 30°) with an initial speed of 8m/s. if the surface of the ramp is

very smooth (essentially frictionless), how high up the ramp will the box go? What distance

along the ramp will it slide?

View Text Solution

15. Wile E. Coyote (mass=40 kg) falls off a 50meter-high cliff. On the way down, the force of air resistance has an average strength of 40 N. find the speed with which he crashes into the ground.

16. Find an expression for the minimum speed at which an object of mass m must be launched in order to escape Earth's gravitational field. (this is called escape speed).

View Text Solution

17. A mover pushes a large crate (mass m=75 kg) from the inside of the truck to the back end (a distance of 6 m), exerting a steady push of 300 N. if he moves the crate this distance in

20 s, what is his power output during this

time?

1. A vertical force F of strength 20 N acts on an object of mass 3 kg as it moves a horizontal distance of 4 m. the work done by the vertical force is equal to

A. 0J

B. 60J

C. 80J

D. 600J

Answer: A

2. Under the influence of a force, an object of mass 4 kg accelerates from 3 m/s to 6 m/s in

8s. How much work was done on the object

during this time?

A. 27J

B. 54J

C. 72J

D. 96J

Answer: B

3. A box of mass m slides down a frictionless inclined plane of length L and vertical height h. what is the change in its gravitational potential energy?

A. -mgL

B.-mgh

C. - mgL/h

 $\mathsf{D.}-mgh/L$

Answer: B

4. While a person lifts a book of mass 2 kg from the floor to a tabletop, 1.5 m above the floor, how much work does the gravitational force do on the booK?

A. - 30J

B. -15J

C. 0J

D. 15J

Answer: A

5. A block mass 3 kg slides down a frictionless inclined plane of length 6 m and height 4 m. if the block is released from rest at the top of the incline, what is its speed at the bottom?

A. 5m/s

B. 6m/s

C. 8m/s

D. 9m/s

Answer: D

View Text Solution

6. A block of mass 3 kg slides down an inclined plane of length 6 m and height 4 m. if the force of friction on the block is a constant 16 N as it slides from rest at the top of the incline, what is its speed at the bottom?

A. 2m/s

B. 3m/s

C. 4m/s

D. 5m/s

Answer: C

View Text Solution

7. As a rock of mass 4 kg drops from the edge of a 40-meter-high cliff, it experiences air resistance, whose average strength during the descent is 20 N. at what speed will the rock hit

the ground?

A. 8m/s

B. 10m/s

C. 12m/s

D. 20m/s

Answer: D

8. An astronaut drops a rock from the top of a crater on the moon. When the rock is halfway down to the bottom of the crater, its speed is what fraction of its final impact speed?

A.
$$\frac{1}{4\sqrt{2}}$$

B.
$$\frac{1}{4}$$

C.
$$\frac{1}{2\sqrt{2}}$$

D.
$$\frac{1}{\sqrt{2}}$$

Answer: D

9. A force of 200N is required to keep an object sliding at a constant speed of 2 m/s across a rough floor. How much power is being expended to maintain this motion?

A. 50W

B. 100W

C. 200W

D. 400W

Answer: D

10. The moon has mass M and radius R. A small object is dropped from a distance of 3R from the moon's center. The object's impact speed when it strikes the surface of the moon is equal to $\sqrt{kGM/R}$ for k=

A.
$$\frac{1}{3}$$

B. $\frac{2}{3}$

C.
$$\frac{3}{4}$$

D. $\frac{4}{3}$

Answer: D

