©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - SUPER COMPANION MADE EASY

TRIANGLES

Exercise 21

1. Fill in the blanks using the correct word given in brackets :

All circles are (congruent , similar)

- Watch Video Solution

2. Fill in the blanks using the correct word give in brackets :

All squares are (Similar, congruent)
3. Fill in the blanks

All triangles are similar. (isosceles, equilateral)

- Watch Video Solution

4. Fill in the blanks using the correct word give in brackets :

Two polygons of the same number of sides are similar, if (a) their corresponding angle are and (b) their corresponding side are (equal, proportional).

- Watch Video Solution

5. Give two different examples of pair of similar figures.

- Watch Video Solution

6. Give two different examples of pair of non-similar figures.

- Watch Video Solution

7. State whether the following quadrilaterals are similar or not:

- Watch Video Solution

1. In Fig ,(i) and (ii), $D E|\mid B C$. Find $E C$ in (i) and $A D$ in (ii).

- Watch Video Solution

2. E and F are point on the sides $P Q$ and $P Q$ and $P R$ respectively of a $\triangle P Q R$.For each of the following cases, state whether $|\mid Q R$: $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$

- Watch Video Solution

3. E and F are point on the sides $P Q$ and $P Q$ and $P R$ respectively of a $\triangle P Q R$.For each of the following cases, state whether $|\mid Q R$: $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$
4. E and F are point on the sides $P Q$ and $P Q$ and $P R$ respectively of a $\triangle P Q R$.For each of the following cases, state whether $|\mid Q R$: $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$

- Watch Video Solution

5. In Fig, if $L M \| C B$ and $L N \| C D$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$

[^0]6. In Fig $D E\left|\mid A C\right.$ and $A E$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$

- Watch Video Solution

7. In Fig $D E \| O Q$ and $D F \| O R$. Show that $E F|\mid Q R$.

- Watch Video Solution

8. In Fig A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B$ || PQ and $A C$ || $P R$. Show that $B C|\mid Q R$.

- Watch Video Solution

9. Using Theorem , prove that a line drawn thought the mid- point of one side of a triangle parallel to another side bisects the third side .(Recall that you have proved it in class IX).

- Watch Video Solution

10. Using Theorem, prove that the line joining the mid-point of any two sides of a triangle is parallel to the third side. (Recall that you have done it is class IX).

- Watch Video Solution

11. ABCD is a trapezium in which $A B|\mid D C$ and its diagonals intersect each other at the point 0 . Show that $\frac{A O}{B O}=\frac{C O}{D O}$

- Watch Video Solution

12. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$ show that ABCD is a trapezium.

- Watch Video Solution

1. State which pairs of triangles in Fig are similar. Write the similarity criterion used by you for answering the question also write the pairs of similar triangles in the symbolic form:

(i)

- Watch Video Solution

2.

In
Fig
$\triangle O D C \sim \triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ}$. Find $\angle D O C, \angle D C$

- Watch Video Solution

3. Diagonals AC and BD of a trapezium ABCD with $A B|\mid D C$ intersect each other at the point 0 . Using a similarity criterion for two triangles, show, that $\frac{O A}{O C}=\frac{O B}{O D}$
4. In Fig $\frac{Q R}{Q S}=\frac{Q T}{P R}=$ and $\angle 1=\angle 2$. show that $\triangle P Q S \sim \Delta T Q R$.

- Watch Video Solution

5. S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\triangle R P Q \sim \Delta R T S$.

- Watch Video Solution

6. In Fig, if $\triangle A B E \angle \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$

- Watch Video Solution

7. In Fig , altitudes AD and CE of triangle ABC intersect each other at the point P. show that : triangleAEP \sim triangleCDP`

- Watch Video Solution

8. In Fig , altitudes AD and CE of triangle ABC intersect each other at the point P. show that : $\triangle A B D \sim \triangle C B E$

- Watch Video Solution

9. In Fig , altitudes AD and CE of triangle ABC intersect each other at the point P. show that : $\triangle A E P \sim \Delta A D B$

- Watch Video Solution

10. In Fig , altitudes AD and CE of triangle ABC intersect each other at the point P. show that : $\triangle P D C \sim \Delta B E C$

- Watch Video Solution

11. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects CD at F . show that $\triangle A B E \sim \Delta C F B$

- Watch Video Solution

12. In Fig , ABC and AMP are two right triangles, right angled at B and M respectively. Prove that :
$\triangle A B C \sim \triangle A M P$

- Watch Video Solution

13. In Fig , $A B C$ and AMP are two right triangles, right angled at B and M respectively. Prove that :
$\frac{C A}{P A}=\frac{B C}{M P}$

- Watch Video Solution

14. GD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, show that:

$$
\frac{C D}{G H}=\frac{A C}{F G}
$$

15. GD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and and $\triangle E F G$ respectively. If $\triangle A B C \sim \Delta F E G$, show that:

$\Delta D C B \sim \Delta H G E$

- Watch Video Solution

16. GD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and and $\triangle E F G$ respectively. If $\triangle A B C \sim \Delta F E G$, show that:

$\Delta D C A \sim D e<H G F$

- Watch Video Solution

17. In Fig E is a point on side $C B$ produced of an isosceles triangle $A B C$ with $\mathrm{AB}=\mathrm{AC}$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \sim \Delta E C T$

- Watch Video Solution

18. sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to side PQ and QR median PM of $\triangle P Q R$ (see Fig). Show
that $\triangle A B C \sim \triangle P Q R$

- Watch Video Solution

19. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show $C A^{2}=C B . C D$

- Watch Video Solution

20. side $A B$ and $A C$ and median $A D$ od a triangle $A B C$ are respectively proportional to side $P Q$ and $P R$ and median $P M$ of another triangle $P Q R$.

Show that $\triangle A B C \sim \triangle P Q R$

- Watch Video Solution

21. A verticle pole of height 6 m casts a shadow 4 m long on the ground, and at the same time a tower on the same ground casts a shadow 28 m long. Find the height of the tower.

- Watch Video Solution

22. If Adand $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim \triangle P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$

- Watch Video Solution

1. Let $\triangle A B C \sim \Delta D E F$ and their areas be , respectively , $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC

- Watch Video Solution

2. Diagonals of a trapezium ABCd with $A B|\mid D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

D Watch Video Solution

3. In Fig, $A B C$ and $D B C$ are two triangles on the same base $B C$. If $A D$ intersects BC ,at O , show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$

- Watch Video Solution

4. If the areas of two similar triangles are equal, prove that they are congruent.

- Watch Video Solution

5. $D, E a n d F$ are respectively the mid - points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.

-
 Watch Video Solution

6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

- Watch Video Solution

7. Prove that the area of an equilateral triangle described on one side of a square is equal of half the area of the equilateral triangle described on one of its diagonals.

- Watch Video Solution

Exercise 24 Tick The Correct Answer And Justify

1. $A B C$ and $B D F$ are two equilateral triangles such that D is the mid -point of $B C$. Ratio of the areas of triangles $A B C$ and BDF is
A. 2: 1
B. 1:2
C. $4: 1$
D. 1: 4

Answer: C

- Watch Video Solution

2. Sides of two similar triangles are in the ratio 4:9 Areas of these triangles are in the ratio
A. 2:3
B. $4: 9$
C. $81: 16$
D. 16: 81

Answer: D

1. Sides of triangles are given below. Determine which of them are right triangles.

In case of a right triangle, write the length of its hypotenuse.
$7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$

- Watch Video Solution

2. Sides of triangles are given below. Determine which of them are right triangles.

In case of a right triangle , write the length of its hypotenuse.
$3 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$

- Watch Video Solution

3. Sides of triangles are given below. Determine which of them are right triangles.

In case of a right triangle, write the length of its hypotenuse.
$50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$

- Watch Video Solution

4. Sides of triangles are given below. Determine which of them are right triangles.

In case of a right triangle, write the length of its hypotenuse.
$13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$

- Watch Video Solution

5. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M . M R$.

- Watch Video Solution

6. In Fig , ABD is a triangle right angled at A and $A C \perp B D$. show that $A B^{2}=B C . B D$

- Watch Video Solution

7. In Fig , ABD is a triangle right angled at A and $A C \perp B D$. show that
$A C^{2}=B C . D C$

- Watch Video Solution

8. In Fig, ABD is a triangle right angled at A and $A C \perp B D$. show that $A D^{2}=B D . C D$

- Watch Video Solution

9. ABC is an isosceles triangle right angled at C . Prove that $A B^{2}=2 A C^{2}$
10. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.
11. $A B C$ is an equilateral triangle of side 2 a. Find each of its altitudes.

- Watch Video Solution

12. Prove that sum of the squares of the side of a rhombus is equal to the to the sum of the squares of its diagonals.

- Watch Video Solution

13. In Fig. 2.54, o is a point in the interior of a triangle $A B C, O D \perp B C, O E \perp A C$ and of $\perp A B$. Show that
$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$,

- Watch Video Solution

14. In Fig. 2.54, o is a point in the interior of a triangle $A B C, O D \perp B C, O E \perp A C$ and of $\perp A B$. Show that
$A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$.

- Watch Video Solution

15. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.
16. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut ?

- Watch Video Solution

17. An aeroplane leaves an airport and files due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airpot and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours ?

- Watch Video Solution

18. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops .
19. D and E are points on the sides $C A$ and $C B$ respectively of a triangle ABC right angale at C . prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

Watch Video Solution

20. The perpendicular from A on side BC of a $\triangle A B C$ intersects BC at D such the $\mathrm{DB}=3 \mathrm{CD}$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$

- Watch Video Solution

21. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=$ $\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.
22. In an equilateral triangle, prove that three times the square pf one side is equal to four times the square of one of its altitudes.

- Watch Video Solution

23. Tick the correct answer and justify : In
$\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$
The angle B is :
A. 120°
B. 60°
C. 90°
D. 45°

Answer: C

Exercise 26 Optional

1. In Fig PS is the bisector of $\angle Q P R$ of $\triangle P Q R$. Prove that $\frac{Q S}{S R}=\frac{P Q}{P R}$

- Watch Video Solution

2. In Fig . D is a point on hypotenuse AC of $\Delta A B C, \perp D M \perp B C$ and $D N \perp A B$. prove that:

$D M^{2}=D N . M C$

- Watch Video Solution

3. In Fig . D is a point on hypotenuse AC of $\triangle A B C, \perp D M \perp B C$ and $D N \perp A B$. prove that:

$D N^{2}=D M . A N$

- Watch Video Solution

4. In Fig, ABC is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$, produced. Prove that $A C^{2}=A B^{2}+B C^{2}+2 B C . B D$

- Watch Video Solution

5. In Fig. ABC is a triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.

6. In Fig. AD is a median of a triangle $A B D$ and $A M \perp B C$. Prove that

$$
A C^{2}=A D^{2}+B C .
$$

$D M+\left(\frac{B C}{2}\right)^{2}$

7. In Fig. AD is a median of a triangle $A B D$ and $A M \perp B C$. Prove that
:
$A B^{2}=A D^{2}-B C \cdot D M+\left(\frac{B C}{2}\right)^{2}$

- Watch Video Solution

8. In Fig . AD is a median of a triangle $A B D$ and $A M \perp B C$. Prove that
$A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

- Watch Video Solution

9. If the diagonals of a parallelogram are equal, show that it is a rectangle.

- Watch Video Solution

10. In Fig . two chords $A B$ and $C D$ intersect each other at the point P. prove that :

$\triangle A P C \sim \triangle D P B$

- Watch Video Solution

11. In Fig . two chords $A B$ and $C D$ intersect each other at the point P. prove that :
$A P . P B=C P . D P$

- Watch Video Solution

12. In Fig. two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle prove that

$\triangle P A C \sim \Delta P D B$

- Watch Video Solution

13. In Fig. two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle prove that

$P A . P B=P C . P D$

- Watch Video Solution

14. In Fig .D is a point on side $B C$ of $\triangle A B C$ such that $\frac{B D}{C D}=\frac{A B}{A C}$ prove that AD is the bisector of $\angle B A C$.

- Watch Video Solution

15. A conical tent is 10 m high and the radius of its base is 24 m . Find slant height of the tent.

- Watch Video Solution

[^0]: - Watch Video Solution

