©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - JEEVITH PUBLICATIONS CHEMISTRY (KANNADA

ENGLISH)

CHEMICAL EQUILIBRIUM

One Mark Questions And Answers

1. Mention the factors affecting rate (velocity) of a reaction.

- Watch Video Solution

2. Define Law of mass action.
3. Define equilibrium constant of reaction.

- Watch Video Solution

4. Write the expressions for K_{c} and K_{p} for the reaction,
$2 A+3 B \underset{V_{b}}{\stackrel{V_{f}}{\Longrightarrow}} 4 C+5 D$

- Watch Video Solution

5. Write the relationship between K_{p} and K_{c}.

- Watch Video Solution

6. Define Le-Chatelier's principle.

- Watch Video Solution

7. What is active mass?

- Watch Video Solution

8. What happens when the temperature of a reversible reaction at equilibrium is increased, if enthalpy change is positive?

- Watch Video Solution

9. Give an example for a reversible reaction in which $K_{p}=K_{c} R T$.

- Watch Video Solution

10. Write an expression for K_{p} for the following reaction: $A+B \Leftrightarrow C+2 D$

- Watch Video Solution

11. How are K_{p} and K_{c} related? Mention the condition under which $K_{p}=K_{c}$.

- Watch Video Solution

12. Give an example of a reaction where $K_{p} \neq K_{c}$.

- Watch Video Solution

13. How does a catalyst influence the equilibrium constant of a reversible reaction?

Watch Video Solution
14. Define physical equilibrium.
15. Define chemical equilibrium.

Watch Video Solution
16. What is the unit of equilibrium constant?

- Watch Video Solution

17. What is reaction quotient (Q).

- Watch Video Solution

18. Explain effect of catalyst of Le-Chatelier's principle.

- Watch Video Solution

19. Define pH .
20. Define pH scale.

- Watch Video Solution

21. What is the law which gives the relationship between the degree of dissociation of a weak electrolyte and its concentration in the solution?

- Watch Video Solution

22. Write the expression for the comparison of the relative strengths of two weak acids in terms of their ionization constants.

- Watch Video Solution

23. What do you mean by reversible process?
24. Define equilibrium.

- Watch Video Solution

25. What is hydrolysis of a salt?

- Watch Video Solution

26. Give two examples of Acidic buffers.

- Watch Video Solution

27. Write the expression of K_{c} for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$. Give units of K .
28. What is the condition of precipitation using solubility product principle?

Watch Video Solution

29. State Henry's law.

- Watch Video Solution

30. What is the effect of temperature of the reactions?
(i) $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
(ii) $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$.

- Watch Video Solution

31. What is the effect of temperature on the reactions?
(i) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+$ Heat
(ii) $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O_{3}(g)-$ Heat

- Watch Video Solution

32. Write the expression of K_{p} for the reaction.
$\mathrm{N}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

- Watch Video Solution

33. Write the equilibrium expression and equilibrium constant for the given reverse reaction.

- Watch Video Solution

34. Define degree of ionization or dissociation.

- Watch Video Solution

35. Define ionic equilibrium.

- Watch Video Solution

36. Under what conditions can a weak electrolyte have a high degree of ionization?

- Watch Video Solution

37. What is the effect of temperature on degree of dissociation?

- Watch Video Solution

38. What is the relationship between $p K_{a}$ and $p K_{b}$ values where K_{a} and K_{b} represent ionization constants of the acid and its conjugate base respectively?
39. What is the relationship between pH and pOH ?

- Watch Video Solution

40. Write the demerits of Brownsted-Lowry theory.

- Watch Video Solution

41. What do you mean by buffer solution?

- Watch Video Solution

42. Define buffer action.
43. Mention the types of buffer solutions.

D Watch Video Solution

44. Mention the uses of buffer solutions.

- Watch Video Solution

45. What is meant by ionic product of water $\left(K_{w}\right)$?

- Watch Video Solution

Two Mark Questions And Answers

1. Explain rate of reaction with its mathematical forms.
2. Define Rate equation with an example.

- Watch Video Solution

3. Define Irreversible reaction with an example.

- Watch Video Solution

4. Define Reversible reaction with an example.

- Watch Video Solution

5. Define Chemical Equilibrium with an example.

- Watch Video Solution

6. Chemical equilibrium is dynamic. Justify.
7. Write the characteristics of chemical equilibrium.

- Watch Video Solution

8. Explain with an example equilibrium involving dissolution of solids in liquids.

- Watch Video Solution

9. Define Arrhenius acid-base theory with one example.

- Watch Video Solution

10. Define Bronsted Lowry theorey or Protonic theory with one example.
11. What are amphoteric substances? Give examples.

- Watch Video Solution

12. What are conjugate acid-base pairs? Give one example.

- Watch Video Solution

13. Explain Lewis electron acid - base concept with an example.

- Watch Video Solution

14. Explain with an example equilibrium involving dissolution of solids in liquids.
15. Mention any three applications of equilibrium constant.

- Watch Video Solution

16. Explain Homogeneous equilibria.

- Watch Video Solution

17. Explain Heterogeneous equilibria.

- Watch Video Solution

18. Give one example for the relation between K_{p} and K_{c} for a reaction, if $\Delta n=0$.
19. Predict the spontaneity of a forward (or) a reverse reaction based on ΔG of a reversible reaction.

- Watch Video Solution

20. Explain factors affecting equilibria.

- Watch Video Solution

21. Explain briefly the effect of temperature on Le-Chatelier's principle.

- Watch Video Solution

22. Briefly explain the effect of pressure on Le-Chatelier's principle.

- Watch Video Solution

23. Write a note on the effect of concentration on Le-Chatelier's principle.

- Watch Video Solution

24. Briefly explain the effect of addition of inert gas on Le-Chatelier's principle.

- Watch Video Solution

25. All Bronsted bases are also lewis bases, but all bronsted acids are not lewis acids. Why?

- Watch Video Solution

26. Exaplain ionisation of acids and bases.

- Watch Video Solution

27. Explain degree of dissociation.

- Watch Video Solution

28. Prove that $p H+p O H=p K_{w}$ at 298 K .

- Watch Video Solution

29. Define pH of a solution.

- Watch Video Solution

30. Define pOH of a solution.

- Watch Video Solution

31. What is dissociation constant of a weak acid $\left(K_{a}\right)$.
32. What is dissociation constant of a weak base $\left(K_{b}\right)$.

- Watch Video Solution

33. Define $p K_{a}$ for weak acids.

- Watch Video Solution

34. Define $p K_{b}$ for a weak base.

- Watch Video Solution

35. What is the relationship between K_{w} and $p K_{w}$.
36. Explain common ion effect taking place in $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$.

- Watch Video Solution

37. Write the relationship between $K_{s p}$ and S for an AB type of salt.

- Watch Video Solution

38. Write the relationship between $K_{s p}$ and S of an $A_{2} B$ type of salt.

- Watch Video Solution

39. Write the relationship between $K_{s p}$ and S of an $A B_{2}$ type of salt.

- Watch Video Solution

40. Write the relatioship between $K_{s p}$ and S of BaSO_{4} and AgCl .

(Watch Video Solution

41. Write the relationship between $K_{s p}$ and S of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.

- Watch Video Solution

42. Write the relationship between $K_{s p}$ and S of PbI_{2}.

- Watch Video Solution

43. Write a general expression for a $A_{x} B_{y}$ type electrolyte.

- Watch Video Solution

44. Give any two differences between strong and weak electrolytes.
45. What is common ion effect? Give an example.

- Watch Video Solution

46. Calculate the pH of 0.01 M HCl .

- Watch Video Solution

47. Calculate the pH of 0.0001 M of HNO_{3}.

- Watch Video Solution

48. Calculate the pH of $0.00025 \mathrm{M} \mathrm{HNO}_{3}$.
49. Calculate the pH of 0.1 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (concentration of hydrogen = $0.1 \times 2=0.2)$.

- Watch Video Solution

50. Calculate pH of $0.005 \mathrm{M}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

51. Calculate pH of $3 \times 10^{-9} \mathrm{M} \mathrm{NaOH}$.

- Watch Video Solution

52. Calculate $\left[\mathrm{OH}^{-}\right]$if $\mathrm{pOH}=8.3$.

- Watch Video Solution

53. Calculate $\left[H^{+}\right]$if $\mathrm{pOH}=9.23$.

- Watch Video Solution

54. Calculate $\left[\mathrm{OH}^{-}\right]$if $\mathrm{pH}=5.284$.

- Watch Video Solution

55. What is the pH of a 0.05 M solution of formic acid? $\left(K_{a}=1.8 \times 10^{-4}\right)$

- Watch Video Solution

56. Calculate the $\left[\mathrm{OH}^{-}\right]$of a solution whose pH is 9.62 .

- Watch Video Solution

57. The pOH of a solution is 5.725 . Calculate the $\left[H^{+}\right]$.

- Watch Video Solution

58. Calculate the pH of 0.125 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

59. Solubility product of barium sulphide $\left(\mathrm{BaSO}_{4}\right)$ is 2.4×10^{-9}.

Calculate it's solubility.

- Watch Video Solution

60. If the solubility product of silver chloride is 1.8×10^{-10}. What is the solubility of silver ion if concentration of Cl^{-}is 0.01 molar.

- Watch Video Solution

Three Mark Questions And Answers

1. Derive the relatioshhip between K_{p} and K_{c}

- Watch Video Solution

2. Explain equilibrium constant (or) equilibrium law.

- Watch Video Solution

3. How to predict the extent of a reaction.

- Watch Video Solution

4. Explain direction of reaction by reaction quotient - Q_{c}.
5. Discuse common ion effect on the solubility of an ionic salt.

- Watch Video Solution

6. Define pH of a solution.

- Watch Video Solution

7. Explain polybasic acids and polyacidic bases with examples.

- Watch Video Solution

8. Derive ionic product of water. Also find its value at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

9. How do you apply law of mass action to a gaseous reversible reaction?
10. Write the conjugate acid for the following
(a) $\mathrm{Cl}^{-},(b) \mathrm{NO}_{3}^{-}$,
(c) HSO_{4}^{-}, (
(d) HCO_{3}^{-},
(e) SO^{2}
${ }^{-}$,
(f) CO_{3}^{2-},
(g) NH^{2-},

- Watch Video Solution

11. Deduce Handerson's equation for a basic buffer.

- Watch Video Solution

12. Deduce Hendersons equation for an acidic buffer.

- Watch Video Solution

13. Explain Mechanism or working of an acid buffer:
14. Explain the Mechanism or working of a basic buffer.

- Watch Video Solution

Numerical Problems

1. The solubility product of AgCl is 2.8×10^{-10} at 298 K . Calculate the solubility of AgCl in (i) pure water (ii) $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution, and (iii) 0.1 M HCl solution.

- Watch Video Solution

2. Calculate the volume of 0.1 M acetic acid solution to be mixed with $50 \mathrm{~cm}^{3}$ of 0.2 M sodium acetate solution, in order to prepare a standard buffer of $\mathrm{pH} 4.94\left(p K_{a}\right.$ of acetic acid $\left.=4.74\right)$.
3. The solubility of $\mathrm{Ag}_{2} \mathrm{CrO} \mathrm{O}_{4}$ at $25^{\circ} \mathrm{C}$ is $0.0332 \mathrm{gdm}{ }^{-3}$. Calculate its solubility product.
(At. Masses : $\mathrm{Ag}=108, \mathrm{Cr}=52, \mathrm{O}=16$).

- Watch Video Solution

4. The solubility product of AgCl at a particular temperature is 1.08×10^{-10} mol $^{2} \mathrm{dm}^{-6}$. Calculate its solubility in 0.01 M HCl .

- Watch Video Solution

5. When the temperature of a reversible rection is increased from 327 to $427^{\circ} C$, the equilibrium constant K_{p} is decreased by four times. Find the enthalpy of the reaction in this temperature range.

- Watch Video Solution

6. For a reaction whose standrad enthalpy change is -100 kJ , what final temperature is needed to double the equilibrium constant from its value at 298 K ?

- Watch Video Solution

7. The equilibrium constant for the Haber process $\frac{3}{2} H_{2}+\frac{1}{2} N_{2} \Leftrightarrow N H_{3}$ is 668 at 300 K and 6.04 at 400 K . What is the average of the reaction for the process in that temperature range?

- Watch Video Solution

8. Calculate the pH of a buffer mixture of 0.05 M NH 44 and 0.12 M $\mathrm{NH}_{4} \mathrm{OH}$ at 298 K . (Dissociation constant of ammonium hydroxide at 298 K is $\left.1.8 \times 10^{-5}\right)$.

- Watch Video Solution

9. What is the pH of a buffer solution prepared by dissolving 0.1 mole of sodium acetate and 0.2 mole of acetic acid in enough water to make a $d m^{3}$ of solution? $\left(K_{a}\right.$ of acetic acid $\left.=1.8 \times 10^{-5}\right)$.

D Watch Video Solution

10. A buffer solution contains 2 moles of ammonium hydroxide and 0.25 mole of ammonium chloride per $d m^{3}$ of the solution. (K_{b} for ammonium hydroxide $\left.=1.8 \times 10^{-5}\right)$. Calculate the pH of the buffer solution.

(Watch Video Solution

11. Calculate the mole ratio in which salt and acid are to be mixed in order to get a buffer solution of 5 ? [$p K_{a}$ of acid $=4$].

- Watch Video Solution

12. What should be the ratio of concentration of acetic acid to sodium acetate while preparing an acid buffer mixture with $\mathrm{pH}=5.7$? (K_{a} for acetic acid is 1.8×10^{-5})

- Watch Video Solution

13.1 mole of $P C l_{5}$ is placed in a closed vessel at 523 K . At equilibrium, if it dissociates to an extent of 35%, calculate K_{p} for $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$. Equilibrium pressure is found to be $5 \times 10^{5} \mathrm{~Pa}$.

- Watch Video Solution

14. Hydrogen ion concentration of a solution is
$2.5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ at $25^{\circ} \mathrm{C}$. Calculate its OH^{-}ion concentration.

- Watch Video Solution

15. Calculate the H^{+}ion concentration in 0.05 M formic acid at 298 K .

$$
\left(K_{a}=1.8 \times 10^{-4} \text { for } \mathrm{HCOOH}\right) .
$$

Watch Video Solution

16. Calculate the OH^{-}ion concentration of 0.005 M solution of a weak base BOH if the degree of dissociation is 0.02 .

- Watch Video Solution

17. Calculate OH^{-}ion concentration in 0.08 M solution of it.

- Watch Video Solution

18. 1 mole of N_{2} and 3 mole of H_{2} are mixed in a closed vessel of $1 d m^{3}$ capacity. At equilibrium if the vessel contains a total of 2.4 moles, calculate equilibrium constant K_{c} for $N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$.
19. A mixture of 1 mole of N_{2} and 3 moles of H_{2} is allowed to react at a constant pressure of 100 bar. At equilibrium, 0.6 mole of ammonia is formed. Calculate the equilibrium constant for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$.

- Watch Video Solution

20. For the reaction $A+B \Leftrightarrow C+D$, the equilibrium constant is 0.05 at 300K. Calculate the equilibrium constant for $C+D \Leftrightarrow A+B$ at the same temperature.

- Watch Video Solution

21. In a reversible reaction the rate constants of the forward and the backward reactions are $4.8 \times 10^{-5} s^{-1}$ and $1.2 \times 10^{-4} s^{-1}$ respectively.

Calculate the equilibrium constant.

(D) Watch Video Solution

22. For the reaction $A+B \Leftrightarrow C+D$, the equilibrium constant is 0.05 at 300K. Calculate the equilibrium constant for $C+D \Leftrightarrow A+B$ at the same temperature.

- Watch Video Solution

23. For $2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}$, the equilibrium constant is K . What is the equilibrium constant for $H I \Leftrightarrow \frac{1}{2} H_{2}+\frac{1}{2} I_{2}$ at the same temperature?

- Watch Video Solution

24. For the reaction, $2 \mathrm{NOCl}(g) \Leftrightarrow 2 N O(g)+\mathrm{Cl}_{2}(g)$ the value of $K_{c}=3.75 \times 10^{-6}$ at 1069 K . Calculate K_{p}.

- Watch Video Solution

25. In the following system at equilibrium, $N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}$, the reaction mixture contains 0.005 mol of $\mathrm{N}_{2}, 0.012 \mathrm{~mol}$ of H_{2} and 0.002 mol of NH_{3} in a 2 litre vessel. Calculate K_{c}.

- Watch Video Solution

26. For $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$, show that $K_{c}=K_{p}(R T)^{2}$.

- Watch Video Solution

27. For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at 773 K , the value of $K_{p}=1.4 \times 10^{-15}$. Calculate $K_{c}\left(\right.$ Given $\left.\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

28. K_{c} for $\mathrm{CS}_{2}(g)+4 \mathrm{H}_{2}(g) \Leftrightarrow C H_{4}(g)+2 \mathrm{H}_{2} S(g)$ is 0.28 at 900K. Calculate $K_{p} .\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.
29. $P \mathrm{Pl}_{3}, \mathrm{Cl}_{2}, P C l_{5}$ are in equilibrium in a closed vessel at 500 K . The equilibrium concentration are $1.6 \mathrm{~mol} L^{-1}, 1.6 \mathrm{~mol} L^{-1}$ and $1.4 \mathrm{~mol} L^{-1}$ respectively. Calculate K_{c} and K_{p} for $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$.

- Watch Video Solution

30. A mixture of N_{2} and H_{2} in the ratio 1:3 is allowed to attain equilibrium. At equilibrium, the total pressure is $5 \times 10^{-5} \mathrm{Nm}^{-2}$ and the mixture contains 40% by volume of NH_{3}. Calculate K_{p}.

- Watch Video Solution

31. The $p K_{a}$ value of acetic acid is 4.7447 at $25^{\circ} \mathrm{C}$. How would you obtain a buffer of acetic acid and sodium acetate with $\mathrm{pH}=4$?
32. A buffer solution of $\mathrm{pH}=4.7$ is prepared from $\mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{CH}_{3} \mathrm{COOH}$. Dissociation constant of acetic acid is 1.75×10^{-5}. Calculate the mole proportion of sodium acetate and acetic acid.

- Watch Video Solution

33. A buffer solution of pH 8.3 is prepared from ammonium chloride and ammonium hydroxide. Dissociation constant of ammonium hydroxide is 1.8×10^{-5}. What is the mole proportion of ammonium chloride and ammonium hydroxide?

- Watch Video Solution

34. 3.0 g of pure acetic acid and 4.1 g of anhydrous sodium acetate are dissolved together in water and the solution is made up to 500 ml . Calculate the pH of the solution. Given K_{a} of acetic acid is 1.75×10^{-5}.
\square
