

CHEMISTRY

BOOKS - JEEVITH PUBLICATIONS CHEMISTRY (KANNADA ENGLISH)

CHEMICAL THERMODYNAMICS

One Marks Questions And Answers

1. What is thermodynamics ?

Watch Video Solution

2. What you mean be enthalpy?

12. Give an expression for the work done in a reversible isothermal expansion of an ideal gas.

16. What is state of a system?

20. Define enthalpy of combustion.

View Text Solution

25. Write the mathematical form of the first law of thermodynamics.

Watch Video Solution
26. Define heat of enthalpy of a solution.
Watch Video Solution
27. Give one difference between an isolated system and a closed system.

Watch Video Solution

28. Which of the following is an intensive property : Surface tension, mass, volume, enthalpy, density?

- (a) Works is done on the system
- (b) Work is done by the system.

33. Write the relation between standard free energy change and equilibrium constant K_p for a reversible reaction.

34. Write the expression for ΔU under an adiabatic process.

Watch Video Solution

Watch Video Solution

35. Write the expression for ΔU under an isothermal process.

36. Write the expression for work done during an isothermal irreversible

reaction for an ideal gas.

4. What is open system ? Give an example.

Watch Video Solution
5. What is an Extensive property? Give an example.
6. Write any two differences between isothermal process and adiabatic
Watch Video Solution
7. Mention the fractors affecting enthalpy of reaction.

8. State and illustrate Hesse's law.

Watch Video Solution
9. Write the relation between ΔH and ΔU .
Watch Video Solution
10 Explain heat of neutralization with an example
IC. Explain heat of heatraisation with an example.
Watch Video Solution
11. With example explain the term 'Heat of transition'.
O Watch Video Solution

12. Define heat (enthalpy) of transition.

16. What are exothermic and endothermic chemical reactions?

Watch Video Solution

24. Justify the following statements :

The entropy of a substance increases on changing from liquid to vapour

state at any temperature.

25. Evaporation of water is an endothermic process but spontaneous. Explain.

27. At a certain temperature 'T', endothermic reaction $A \to B$ proceeds virtually to the end. Determine the sign of ΔS for the reaction $A \to B$ and ΔG for the reverse reaction $B \to A$.

28. Explain standard enthalpy of atomisation $(\Delta_s H^{\,\circ})$

29. Explain with the help of an example, the difference between bond

dissociation energy and bond energy.

Watch Video Solution

30. What is meant by free energy of a system ? What will be the direction

of the chemical reaction when (i) $\Delta G=0$ (ii) $\Delta G>0$ (iii) $\Delta G<0$?

Watch Video Solution

31. Why most of the exothermic process (reaction) are spontaneous?

32. The enthalpy of combustion of sulphur is 297 kJ. Write the thermochemical equation for combustion of sulphur. What is the value of

36. Explain standard enthalpy of dilution.

41. If the enthalpy of combustion of diamond and graphite are $-395.4kJmol^{-1}$ and $-393.6kJmol^{-1}$ what is the enthalpy change for the C (graphite) \rightarrow C (diamond) conversion ?

42.
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)\Delta H = -242kJmol^{-1}$$
. Bond energy of H_2 and O_2 are $436mol^{-1}$ and $500mol^{-1}$ respectively. What is the bond energy of the O-H bond ?

Watch Video Solution

43. What is a spontaneous process ? Give an example.

D Watch Video Solution

44. Define a non-spontaneous process.

1. Classify the following processes as reversible or irreversible :

Dissolution of sodium chloride.

3. Classify the following processes as reversible or irreversible :

Mixing of two gases by diffusion.

4. Classify the following processes as reversible or irreversible :

Melting of ice without rise in temperature.

5. When an ideal gas expands in vaccum, there is neither absorption nor

evolution of work? Why?

Watch Video Solution

6. Justify the following statements :

Reaction with $\Delta G < 0$ always have an equilibrium constant greater than

1.

Watch Video Solution

7. Justify the following statements :

Many thermodynamically feasible reactions do not occur under ordinary

conditions.

8. Justify the following statements :

At low temperatures, enthalpy change dominates the ΔG expression and

at high temperatures it is the entropy which dominates the value of ΔG .

12. Consider the reaction. A+B
ightarrow C+D

If the reaction is exothermic and spontaneous in the direction indicated,

can you comment on the sign of ΔG and ΔS ?

> Watch Video Solution

13. Consider the reaction. A+B ightarrow C+D

If the reaction is exothermic and spontaneous only in the direction opposite to the indicated one coment on the sign of ΔG and ΔS for the direction indicated in the equation.

14. Predict in which of the following reactions, entropy increases/decreases

Temperature of a crystalline solid is raised from 0 K to 115 K

21. Explain change in entropy of a system during a reversible process

$$\Delta S = rac{q_{rev}}{T}$$

22. Derive Gibb's Helmholtz equation.

24. Write the relation between ΔG° and equilibrium constant.

- A. $\Delta G^{\,\circ} = -2.303 RT \log K$
- $\mathsf{B}.\,\Delta G^{\,\circ}\,=\,-\,RT\log K$
- C. $\Delta G^{\,\circ}\,=\,2.303 RT\log K$
- D. $\Delta G^{\,\circ} = -2.303 \log K$

Answer: A

$$CO_2(g) + H_2(g) o CO(g) + H_2O(g)$$

Given that the $\Delta_f H^\circ$ of $CO(g) = -110.5kJ, \Delta_f H^\circ$ of $CO_2(g) = -393.8kJ, \Delta_f H^\circ$ of $H_2O(g) = -241.8kJ$ respectively

3. $1m^3$ of C_2H_4 at STP is burnt in oxygen, according to the thermochemical reaction : $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l), \Delta H = -1410kJmol^{-1}.$ Assuming 70% efficients, determine how much of useful heat is evolved in the reaction.

Watch Video Solution

4. With the help of a thermochemical equation, calculate $\Delta_f H^\circ$ at 298 K for the following reactions :

$$egin{aligned} ext{C(graphite)} + O_2(g) & o CO_2(g), \Delta H = -393.5 kJ/mol \ H_2(g) + rac{1}{2}O_2(g) & o H_2O(l), \Delta_f H^\circ = -285.8 kJ/mol \ CO_2(g) + 2H_2O(l) & o CH_4(g) + 2O_2(g), \Delta_f H^\circ = +890.3 kJ/mol \end{aligned}$$

5. The heat of combustion of C_2H_6 is -368.4kcal. Calculate the heat of combustion of C_2H_2 , when the heat of combustion of H_2 is $68.32kcalmol^{-1}$.

 $C_2H_4(g)+H_2(g)
ightarrow C_2H_6(g), \Delta H=37.1 kcal.$

Watch Video Solution

6. The following thermochemical equations represent combustion of ammonia and hydrogen.

 $egin{aligned} 4NH_3(g) + 3O_2(g) &
ightarrow 6H_2O(l) + 2N_2(g), \Delta H = -1516kJ \ 2H_2(g) + O_2(g) &
ightarrow 2H_2O(l), \Delta H = -572kJ \end{aligned}$

Calculate enthelpy of formation of ammonia.

Watch Video Solution

7. The equilibrium constant at $25\,^\circ C$ for the process

 $CO^{3\,+}(aq)+6NH_3(aq) \Leftrightarrow ig[CO(NH_3)_6ig]^3(aq)$ is $2.5 imes 10^6$. Calculate

the value of ΔG° at $25^\circ C.~(R=8.314 JK^{-1}mol^{-1}).$ In which direction

is the reaction spontaneous under standard conditions ?

Watch Video Solution

8. What is the value of the equilibrium constant for the following reaction at 400 K ? $2NOCl(g) \Leftrightarrow 2NO(g) + Cl_2(g)$ $\Delta H^\circ = 77.5 kJmol^{-1}, R = 8.3124Jmol^{-1}K^{-1}, \Delta S = 135JK^{-1}mol^{-1}$

Watch Video Solution

9. 1.250 g of a sample of octane (C_8H_{18}) is burnt in excess of oxygen in a bomb calorimeter. The temperature of the calorimeter rises from 298 K to 304.73 K. If heat capacity of calorimeter is 8.93 kJ/K. Calculate the heat transferred. Also calculate ΔU and ΔH of the reaction at 298 K. The reaction involved is

$$C_8 H_{18\,(\,l\,)} \,+\, rac{25}{2} O_{2\,(\,g\,)} \, o\, 8 C O_{2\,(\,g\,)} \,+\, 9 H_2 O_{\,(\,l\,)}$$

 $2HgO(s)
ightarrow 2Hg(l) + O_2(g)$

 $\Delta H^{\,\circ}\,=91 k J mol^{\,-1}$ at $298 K,\,S^{\,\circ}_{\,(HgO\,)}\,=\,72.0 J K^{\,-1} mol^{\,-1}.$

Watch Video Solution

11. From the data given below at 298 K for the reaction :

 $CH_4(g)+2O_2(g)
ightarrow CO_2(g)+2H_2O(l)$

Calculate the enthalpy of formation of $CH_4(g)$ at 298 K.

Enthalpy of reaction is = -893.5 kJ

Enthalpy of formation of $CO_2(g) = 393. \ kJmol^{-1}$

Enthalpy of formation of $H_2O(l) = 286.0 k Jmol^{-1}$.

12. Calculate the free energy change when 1 mole of NaCl is dissolved in water at 298 K. (Given : Lattice energy of NaCl = $-777.8kJmol^{-1}$), Hydration energy $-774.1kJmol^{-1}$ and $\Delta S = 0.043kJmol^{-1}mol^{-1}$ at 298 K).

13. For the equilibirum, $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$ at 298 K, $K = 1.8 \times 10^{-7}$. Calculate ΔG° for the reaction $(R = 8.314 J K^{-1} mol^{-1})$.

14. Calculate the entropy change involved in convertion of 1 mole of water at 373 K to vapours at the same temperature. Latent heat of vaporisation of water $= 2.257 k J g^{-1}$.

15. Calculate ΔH_f of HCl if bond energy of H-H bond is 437 kJ Cl-CL bond

is 244, and H-C is $433kJmol^{-1}$.

16. Calculate the Gibb's energy change for the formation of propane,

 $C_3H_{8(g)}$ at 298 K. Given that

 $\Delta_f H$ for propane $= -103.85 k Jmol^{-1}$

 ΔS for the reaction is $-269.74 J K^{-1}$.

Watch Video Solution

17. For the reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g), \Delta H = -95.2kJ$ and $\Delta S = -198.1JK^{-1}$. Calculate the temperature at which Gibb's energy change of the reaction (ΔG) becomes equal to zero.

18. For a water gas reaction, $C_{(s)} + H_2O_{(g)} \Leftrightarrow CO_{(g)} + H_{2(g)}$ at 1000 K, the standard Gibb's energy change is $-8.1kJmol^{-1}$. Calculate the value of equilibrium constant.

21. Equilibrium constant of a reaction is 0.008. Calculate the standard

Gibb's energy change at 298 K.

298 K.

Watch Video Solution

24. Enthalpy change and entropy change of a chemical reaction are $-10.5kJmol^{-1}$ and $-31.5JK^{-1}mol^{-1}$ respectively. Predict whether the reaction is spontaneous or not at 300 K.

25. For the reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g), \Delta H = -95.2kJ$ and $\Delta S = -198.1JK^{-1}$. Calculate the temperature at which Gibb's energy change of the reaction (ΔG) becomes equal to zero.

Watch Video Solution

26. One mole of an ideal gas at $27^{\circ}C$ undergoes isothermal expansion reversible from a volume of $10dm^3$ to a volume of $20dm^3$. Calculate the work done on the gas.

Watch Video Solution

27. Three moles of an ideal gas at $27^{\circ}C$ are compressed reversibly and isothermally from a volume of $10dm^3$ to $5dm^3$. Calculate the work done on the gas.

28. Three moles of helium gas at one atmosphere are compressed reversibly and isothermally at $127^{\circ}C$ to 5 atmospheres. Calculate the work done.

29. One mole of an ideal gas expands isothermally and reversibles from 5

atmospheres to 1 atmosphere at $50\,^\circ C$. Calculate the work done.

Watch Video Solution

30. Calculate the enthalpy of formation of methanol from the following

data,

$$egin{aligned} CH_3OH(l) + rac{3}{2}O_2(g) & o CO_2(g) + 2H_2O(l) \dots (i) & \Delta H^\circ = -726.4k \ C(ext{graphite}) + O_2(g) & o CO_2(g) \dots (iii) & \Delta H^\circ = -393.5k Jmol^{-1} \ H_2(g) + rac{1}{2}O_2(g) & o H_2O(l) \dots (iii) & \Delta H^\circ = -285.8k Jmol^{-1}. \end{aligned}$$

31. When one mole of gaseous methane s burnt in excess of gaseous oxygen, 890 kJ of heat is evolved in addition to the formation of gaseous CO_2 and liquid water. (a) Write the thermochemical equation for this reaction. (b) Calculate the amount of heat evolved when 10 grams of methane is burnt.

Watch Video Solution

32. Calculate $\Delta_r G^\circ$ for the conversion of oxygen to ozone, $rac{3}{2}O_2(g) o O_3$ at 298K, given partial pressure equilibrium constant is $2.47 imes 10^{-29}$.

Watch Video Solution

33. Calculate ΔH for the reaction $2O_2(g) o 3O_2(g)$ at 298 K and 1 atmosphere pressure given that $\Delta U=-287.9kJ$ and $R=8.314JK^{-1}mol^{-1}.$

34. Calculate the ΔH at 298 K for the reaction $rac{1}{2}N_2(g)+rac{3}{2}H_2(g) o NH_3(g)$ given that ΔH for the formation of NH_3 has a value of $-46.0kJmol^{-1}$

$$(R = 8.314 J K^{-1} mol^{-1}).$$

Watch Video Solution

35. Enthalpy of combustion of benzene is $-3267kJmol^{-1}$. Calculate enthalpy of formation of benzene, given enthalpy of formation of CO_2 and water are $-393.5kJmol^{-1}$ and $-285.83kJmol^{-1}$.

Watch Video Solution

36. Calculate $\Delta_r G^\circ\,$ for the reaction for which the value of K_p is $1.5 imes10^{10}$ at 300 K.

37. ΔG° of a reaction is $120 k Jmol^{-1}$. Calculate the K_p at $20^{\circ}C$.

38. Standard free energy change of a reaction is $+150kJmol^{-1}$. Calculate

 K_p at $30^{\,\circ}\,C.$