©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA
 ENGLISH)

ANNUAL EXAMINATION QUESTION PAPER MARCH 2013 NORTH

Part A

1. If $U=\{1,2,3,4,5,6,7,8,9\}$ is the universal set $A=\{2,4,6,8\}$ then find the complement of A

- Watch Video Solution

2. If $(x+y, x-y)=(3,1)$ find the value of x and y
3. Convert $\left(\frac{5 \pi}{6}\right)^{e}$ into degrees.

- Watch Video Solution

4. Solve $5 x-7>4 x+9, x \in N$

- Watch Video Solution

5. Find n if $.{ }^{n} C_{13}=.{ }^{n} C_{12}$.

- Watch Video Solution

6. Find the 13th term of $1,4,7,10$
7. Find the slope of the line $x-y+=0$

- Watch Video Solution

8. Find the eccentricity of the elipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

- Watch Video Solution

9. Name the octant in which ($1,-2,-3$) lies

- Watch Video Solution

10. Given $f(x)=\left\{\begin{array}{l}\frac{x}{|x|} \\ 2 \\ x \neq 0 \\ x=0\end{array}\right\}$ find $\lim _{x \rightarrow 0} f(x)$

- Watch Video Solution

11. Identify the type of 'or ' used in statement " $\sqrt{2}$ is a rational number or an irrational number

Watch Video Solution

12. The coefficient of variation for a distribution is 60 and standard deviation is 21 . Find the arithmetic mean.

- Watch Video Solution

Part B

1.

$$
\text { If } A=\{3,5,7,9\}, B=\{5,7,9,11\} \text { and } C=\{13,15\} \text { find } A \cap(B \cup \subset
$$

- Watch Video Solution

2. Let A and B be two sets such that $n(A)=3$ and $n(B)=2$, If $(x, 1),(y, 2)(z, 1)$ are in $A \times B$ find A and B where $\mathrm{x}, \mathrm{y}, \mathrm{z}$, are distinct elements

Watch Video Solution

3. The minute hand of a watch is 1.5 cm long. How far foes its tip move in 40 minutes?

- Watch Video Solution

4. If $\cot x=-\frac{5}{12}, \mathrm{x}$ lies in the second quadrant,find the values of $\sec x$ and $\operatorname{cosec} x$

0
 Watch Video Solution

5. solve $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$
6. Let $Z_{1}=2-I$ and $Z_{2}=-2+i$ Find the imaginary part of $\frac{1}{Z_{1} Z_{2}}$ solve $=\sqrt{5} x^{2}+x+\sqrt{5}=0$

- Watch Video Solution

7. Find all pairs of consecutive odd numbers, both of which are larger such that their sum is less than 40.

- Watch Video Solution

8. In how many ways can the letters of the word 'PERMUTATIONS ' be arranged if the vowels are all together?

- Watch Video Solution

9. Find r if. ${ }^{5} P_{r}=2 \cdot{ }^{6} P_{r-1}$
10. Find the middle term of $\left(x-\frac{1}{x}\right)^{16}$

Watch Video Solution

11. In an A.P if $m^{t h}$ term is n and $n^{t h}$ term is m , where $m \neq n$, find the $p^{t h}$ term .

- Watch Video Solution

12. Derive the equation of the line passing through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

(Watch Video Solution

13. If three points $(h, 0),(a, b)$ and (o, k) lie on a line,show that $\frac{a}{h}+\frac{b}{k}=1$
14. Are the points $A(3,6,9), B(10,20,30$,$) and C(25,-41,5)$ the vertices of a right angled triangle?

- Watch Video Solution

15. Identify the quantifier and write the negation of the statement "There exists a number which is equal to its square."

- Watch Video Solution

Part C

1. In a class of 35 students, 24 like to play cricket and 16 to play football.

Also each student like to play atleast one of the two games. How many students like to play both cricket and football ?
2. Let $\mathrm{A}=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{\{a, b): a, b \in A$, b is exactly divisible by a\}.
(i) Write R in roster form, (ii) Find the domain of R , (iii) Find the range of R.

- Watch Video Solution

3. Let $f(x)=x^{2}, g(x)=2 x+1$ be two functions. Then find
(i) $(\mathrm{f}+\mathrm{g})(\mathrm{x})$ (ii) $(\mathrm{f}-\mathrm{g})(\mathrm{x})$ (iii) (fg) (x)

- Watch Video Solution

4. Prove that : $\sin 3 x=3 \sin x-4 \sin ^{3} x$

- Watch Video Solution

5. $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$

(Watch Video Solution

6. The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. If the perimeter of the triangle is at least 61 cm , find the minimum length of the shortest side.

- Watch Video Solution

7. (i) If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$ prove that $\left(x^{2}+y^{2}\right)=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$

- Watch Video Solution

8. Convert $\frac{1-i}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ into polar form

- Watch Video Solution

9. Find the coefficient of $x^{6} y^{3}$ in the expansion of $(x+2 y)^{9}$

- Watch Video Solution

10. The sum of first three terms of a G. P. is (13)/(12) ` and their product is -1 Find the common ratio and the terms

- Watch Video Solution

11. Drive an expression for the distance between two parallel lines $y=m x+c_{1}$ and $y=m x+c_{2}$

- Watch Video Solution

12. Find the equation of a line perpendicular to the line $x-2 y+3=0$ and passing through the point ($1,-2$)
13. Find the focus the equations of the directrix and the length of the rectum of the parabola $y^{2}=16 x$

- Watch Video Solution

14. Evaluate $L t_{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$.

- Watch Video Solution

15. Differentiate of $\cos x$ w.r.t. x from first principles

- Watch Video Solution

16. Veryfy by the method of contradiction that $\sqrt{7}$ is an irrational

- Watch Video Solution

17. A committee of two persons is selected from two men and two women. What is the probability that the committee will have (i) no men
(ii)two men

- Watch Video Solution

Part D

1. Prove that $\cos 6 x=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$

- Watch Video Solution

2.1 $1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots \ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4} \forall n \in N$.

- Watch Video Solution

3. A group consists of 7 boys and 5 girls. Find the number of ways in which a team of 5 members can be selected so as to have atleast one boy and girl.

- Watch Video Solution

4. Derive the equation of the ellipse in the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

- Watch Video Solution

5. Prove that $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x}{x}=1$ (x being measured in radians)

- Watch Video Solution

6. Find the mean deviation about the mean for the following data.

Marks obtained	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Number of students	2	3	8	14	8	3	2

7. Prove geometrically that $\cos (x+y)=\cos x \cos y+\sin x \sin y$

(Watch Video Solution

8. Find the sum to n terms of the series $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots .$.

(Watch Video Solution

9. Derive a formula for the angle between two lines with slopes m_{1} and m_{2}. Hence the slopes of the lines which make an angle $\frac{\pi}{4}$ with the line $x-2 y+5=0$

- Watch Video Solution

10. Find $\frac{d y}{d x}$ if $\mathrm{y}=\mathrm{x} \sin x-\frac{x^{2}}{13+\tan x}$
