

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA ENGLISH)

CIRCLES

Exercise One Marks Questions With Answers

1. Find the equations of circle with centre at (2,4) and radius =5.

2. Find the equations of circle with centre at (1,2) and passing through (4,6)

Watch Video Solution

3. Find h and k if $kx^2+2hxy+4y^2-2x+3y-7=0$ represents a circle

4. Find the equation of circle whose centre is at (a,0) and touching y - axis.

- **5.** Write the condition for the circle $x^2+y^2+2gx+2fy+c=0$ to touch both the axes.
 - Watch Video Solution

- **6.** Find the area of the circle whose parametric equations $x=3+2\cos\theta$ and $y=1+2\sin\theta$.
 - Watch Video Solution

- **7.** Write the condition (in terms of g,f,c) under which $x^2+y^2+2gx+2fy+c=0$ becomes an point circle.
 - Watch Video Solution

8. Find the equation of the directrix of the parabola $y^2 = -8x$.

9. Find the co-ordinates of the end of points of the latus rectum of the parabola $y^2=12x.$

10. Find the focus of the parabola $x^2 + 16y = 0$.

11. Find the eccentricity of the ellipse $\dfrac{x^2}{9} + \dfrac{y^2}{4} = 1$

Watch Video Solution

12. Find the length of semi latus rectum of the ellipse

$$\frac{x^2}{16} + \frac{y^2}{12} = 1$$

13. Find the eccentricity of the ellipse $25x^2+16y^2=400$.

1. Find the equation of circle whose diameters are

x + y = 6 and x + 2y = 4 and whose radius is 10 units.

Watch Video Solution

2. Find the equation of circle with centre at (6,1) and touching the line 5x+12y-3=0

Watch Video Solution

3. Find the equation of circle having (4, 2) and (-5, 7) as the extremities of a diameter.

4. Find the centre of the circle passing through (0,0)(3,0) and (0,5)

Watch Video Solution

5. Find the centre of the circle $3x^2 + 3y^2 - 6x - 12y - 2 = 0$

6. If the radius of the circle $x^2+y^2+4x-2y-k=0$ is 4 units find k.

7. If one end of the diameter of the circle $x^2+y^2-2x+6y-3=0$ is $(+4,\,-5)$, find the coordinates of the other end.

8. Show that x=3y=0 is a diameter of the circle $x^2+y^2-6x+2y+34=0.$

9. Find the equation of the diameter of the circle $x^2+y^2-8x+2y-18=0$, which when produced passes through $(\,-3,\,+2).$

10. Find the equation of the circle with centre at $(1,\ -2)$ and passing through the centre of the circle $x^2+y^2-4x+1=0$

Watch Video Solution

11. Find the length of the chord of the circle $x^2+y^2+6x-2y-1=0$ intercepted by x - axis.

Watch Video Solution

Exercise Five Marks Questions With Answers

1. Find the equation of the circle with touching both the axes and passing though the point (2,9)

Watch Video Solution

2. Find the equation of circle passing through the points (5,3),(1,5) and (3,-1)

Watch Video Solution

3. Prove that the points

(2,0), (-2,0), (-1,3) and (1,-1) are concyclic.

4. Show that the circle touch each other:

$$x^2 + y^2 - 6x - 2y + 1 = 0$$
 and $x^2 + y^2 - 2x - 8y + 13 = 0$

5. Find the length of the chord intercepted by the circle $x^2+y^2-8x-6y=0$ and the line x-7y-8=0

6. Find the equation of the circle passing through the points (4,1) and (6,5) and whose centre is on the line

4x + y = 16

7. Find the equation of the circle passing through (0,0) and making intercept a and b on the coordinates axes.

Watch Video Solution

Exercise 2 3 Marks Questions With Answers

1. Find the points of the parabola $y^2=2x$ where the focal distance is $\frac{5}{2}$.

Watch Video Solution

2. Find the equations of directrices of the ellipse $25x^2+4y^2=100.$

3. Find the centre of the ellipse whose vertices are (2, -2)&(2, 4) Also find the length of major axis.

4. Find the eccentricity of the ellipse if its minor axis is equal to the distance between the foci.

5. Find the eccentricity of the ellipse (a < b) if the distance between the directrices is 5 and distance between the foci =

6. Find the equation of ellipse (a < b) if the minor axis is of length 6 and distance between foci = 8.

Watch Video Solution

7. Find the sum of the focal distance of any point on the ellipse $4x^2+9y^2=36$.

Watch Video Solution

8. Find the foci of the hyperbola $9x^2-4y^2=36$.

9. Find the length of latus rectum & directrices of the hyperbola $9y^2-16x^2=144$.

10. Find the eccentricity of the hyperbola if the distance between the foci is 10 and length of L.R. is 9/2.

11. Find the equation of hyperbola in the standard form given that length of L.R. $=\frac{14}{3}\&e=\frac{4}{3}.$

12. Find the equation of hyperbola in the form $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1, \text{ given that length of transverse axis = 10 and eccentricity = 2}.$

Watch Video Solution

13. If e_1 and e_2 are the eccentricities of a hyperbola and its conjugate then prove that $\frac{1}{e_1^2}+\frac{1}{e_2^2}=1.$

