©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

ANNUAL EXAMINATION QUESTION PAPER NORTH- 2018

Part A

1. What are fundamental units ?

- Watch Video Solution

2. Define centripetal acceleration .

- Watch Video Solution

3. When is work done by a force postivie ?

- Watch Video Solution

4. Express torque in vector form .

5. Give the relation between stress and strain .

- Watch Video Solution

6. State Pascal's Law .

D Watch Video Solution

7. What is magnus effect ?

- Watch Video Solution

8. Define heat capacity .

- Watch Video Solution

9. Mention the formulae for coefficient of performance of a refrigerator .
10. Define mean free path .

D Watch Video Solution
11. What are fundamental units ?

D Watch Video Solution
12. Define centripetal acceleration .
13. When is work done by the force positive?

D Watch Video Solution

14. Express torque in vector form .

D Watch Video Solution
15. Give the relation between stress and strain
16. State Pascal's law.

D Watch Video Solution
17. What is magnus effect ?

D Watch Video Solution

18. Define heat capacity .

D Watch Video Solution
19. Mention the formulae for coefficient of performance of a refrigerator .

- Watch Video Solution

20. Define mean free path .

- Watch Video Solution

1. Fundamental forces in nature

D Watch Video Solution

2. Write the dimensional formula for Force

D Watch Video Solution

3. Write the dimensional formula for Pressure

D Watch Video Solution

4. Define displacement and acceleration .

- Watch Video Solution

5. Give the representation for scalar product and vector product of two vectors .

- Watch Video Solution

6. Mention any two methods of reducing friction.

Watch Video Solution

7. Write the general conditions for equilibrium of a rigid body .

- Watch Video Solution

8. Explain the application of surface tension idea in case of action of detergents .

- Watch Video Solution

9. What is simple harmonic motion ? Give one example.

D Watch Video Solution
10. Write any two fundamental forces is nature

D Watch Video Solution
11. Write the dimensional formula for Force
12. Write the dimensional formula for Pressure

D Watch Video Solution

13. Define displacement and acceleration .

- Watch Video Solution

14. Give the representation for scalar product and vector product of two vectors .
15. Mention any two methods of reducing friction.

D Watch Video Solution
16. Write the general conditions for equilibrium of a rigid body .
(Watch Video Solution

17. Explain the application of surface tension

 idea in case of action of detergents .- Watch Video Solution

18. What is simple harmonic motion ? Give one example.

- Watch Video Solution

Part C

1. Derive an expression for maximum height of a projectile .

D Watch Video Solution

2. What is angle of banking ? Mention an expression for maximum safe speed of a vehicle on a level road and express the symbols.

- Watch Video Solution

3. Distinguish between conservative and nonconservative forces .

D Watch Video Solution
4. Write any five comparision between linear and rotational motion.

D Watch Video Solution

5. State Kepler's law of planetary motion.

- Watch Video Solution

6. Give the expression for Young's modulus of elasticity pretaining to a stretched wire.

- Watch Video Solution

7. Prove that $\alpha_{r}=\frac{1}{T}$ for ideal gas .

- Watch Video Solution

8. Write any three assumptions of Kinetic theory of an ideal gas

D Watch Video Solution
9. Derive an expression for maximum height of a projectile.
10. What is angle of banking ? Mention an expression for maximum safe speed of a vehicle on a level road and express the symbols.

- Watch Video Solution

11. Distinguish between conservative and nonconservative forces .
12. Compare the equations of linear motion with rotational motion .

D Watch Video Solution

13. State Kepler's law of planetary motion.

D Watch Video Solution

14. Derive an expression for Young modulus of a wire in terms of its radius.
15. Prove that $\alpha_{r}=\frac{1}{T}$ for ideal gas .

- Watch Video Solution

16. Mention any three assumption of kinetic theory of gases.
(Watch Video Solution
17. What is v-t graph? Derive the expression $x=V_{0} t+1 / 2 a t^{2}$ using v-t graph.

D Watch Video Solution

2. State and prove conservation of linear momentum in case of collision of two bodies.

- Watch Video Solution

3. Define torque and angular momentum .

- Watch Video Solution

4. Derive the relation between torque and angular momentum .

- Watch Video Solution

5. Explain different stages of Carnot's cycle with P-V diagram .
6. Derive an expression for time period of oscillating bob of simple pendulum .

- Watch Video Solution

7. Mention the differences between progressive and stationary waves .

- Watch Video Solution

8. An aircraft executes a horizontal loop of radius 1 km with a steady speed of 900 kmph .

Compare its centripetal acceleration with acceleration due to gravity .

D Watch Video Solution

9. A man weighing 49 kg carries a bag of 2 kg .

He climbs to the top of a building 100 m tall in
5 minute. Calculate the work done by the man and the power he develops.
10. Calculate g at the bottom of a mine 8 km deep and at an altitude 32 km above the earth's surface. Radius of earth $=6.4 \times 10^{4} \mathrm{~m}$ and g on earth's surface $=9.8 m / s^{2}$.

D Watch Video Solution

11. A cubical ice box of thermocol has each side

30 cm and thickness $5 \mathrm{~cm}, 4 \mathrm{~kg}$ of ice is put in
the box, if outside temperature is $45^{\circ} \mathrm{C}$ and
coefficient of thermal conductivity is
$0.01 \mathrm{Js}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$. Calculate the mass of ice
left after 6 hrs. Take latent heat of fusion of ice as $335 \times 10^{3} \mathrm{JK}^{-1}$

D Watch Video Solution

12. The apparent frequency of a note when an observer moves towards a stationary source with a velocity $20 \mathrm{~m} / \mathrm{s}$ in 200 Hz . Calculate the actual frequency of a note . Calculate wavelength if velocity of sound is $350 \mathrm{~m} / \mathrm{s}$.

Watch Video Solution

13. Show that $x=v_{0} t+1 / 2 a t^{2}$ by graphical method.

D Watch Video Solution

14. State and prove conservation of linear momentum in case of collision of two bodies.

- Watch Video Solution

15. Define torque and angular momentum .

D Watch Video Solution

16. Derive the relation between torque and angular momentum.

D Watch Video Solution

17. Explain different stages of Carnot's cycle with P-V diagram .
18. Derive an expression for time period of oscillating bob of simple pendulum .

D Watch Video Solution

19. Mention the differences between
progressive and stationary waves .
20. An aircraft executes a horizontal loop of radius 1 km with a steady speed of 900 kmph .

Compare its centripetal acceleration with acceleration due to gravity .

- Watch Video Solution

21. A man weighing 49 kg carries a bag of 2 kg .

He climbs to the top of a building 100 m tall in 5 minute. Calculate the work done by the man and the power he develops .
22. Calculate g at the bottom of a mine 8 km deep and at an altitude 32 km above the earth's surface. Radius of earth $=6.4 \times 10^{4} \mathrm{~m}$ and g on earth's surface $=9.8 m / s^{2}$.

D Watch Video Solution

23. A cubical ice box of thermocol has each side 30 cm and thickness $5 \mathrm{~cm}, 4 \mathrm{~kg}$ of ice is put in the box, if outside temperature is
$45^{\circ} \mathrm{C}$ and coefficient of thermal conductivity
is $0.01 \mathrm{Js}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$. Calculate the mass of ice left after 6 hrs. Take latent heat of fusion of ice as $335 \times 10^{3} \mathrm{JK}^{-1}$

D Watch Video Solution

24. The apparent frequency of a note when an observer moves towards a stationary source with a velocity $20 \mathrm{~m} / \mathrm{s}$ in 200 Hz . Calculate the actual frequency of a note . Calculate wavelength if velocity of sound is $350 \mathrm{~m} / \mathrm{s}$.
