

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

ANNUAL EXAMINATION QUESTION PAPER WITH ANSWER SOUTH 2019

Part A

1. Write the dimensional formula for Force

2. Write the SI unit of power.

Watch Video Solution

3. What is a projectile motion?

4. Write relation between angular velocity and linear velocity,

Watch Video Solution

5. Give the expression for acceleration due to gravity at an altitude above the surface of the Earth.

6. Define stress.

Watch Video Solution

7. Define angle of contact.

Watch Video Solution

8. Write ideal gas equation for one mole of gas.

9. State Zeroth law of thermodynamics.

Watch Video Solution

Part B

1. State law of equipartition of energy.

2. Write any two fundamental forces is nature :

3. Mention any two uses of dimensional analysis.

4. A body gets displacement of 5m in 2s, what is the average velocity?

5. Define scalar product of two vectors.

6. Define coefficient of kinetic friction.

7. Define specific heat of a substance

8. Write any two differences between isothermal process and adiabatic process.

Watch Video Solution

Part C

1. Define frequency and period of oscillation.

2. Derive the expression for centripetal acceleration.

Watch Video Solution

3. Deduce F = ma, using Newton's Second law of Motion.

4. State work energy theorem with proof.

Watch Video Solution

5. Show that kinetic energy of rotating body is

$$\frac{1}{2}I\sigma^{2}$$

Watch Video Solution

6. State Kepler's law of planetary motion.

7. Calculate $\frac{C_p}{C_v}$ for monatomic gas.

Watch Video Solution

8. Write stress-strain curve for a metal. What is proportional limit and yield point?

Watch Video Solution

9. State and explain Bernoulli's Principle.

10. Show that $x=v_0t+1/2at^2$ by graphical method.

11. State and explain law of conservation of momentum with proof.

1. State and explain parallel axis theorem and perpendicular axis theorem.

Watch Video Solution

2. Explain working of Carnot's heat engine.

3. Derive an expression for energy of a body which is in S.H.M

Watch Video Solution

4. What is Doppler effect of sound? Derive expression for apparent frequency of sound. When source is moving away from stationary listener.

5. A body is projected at an angle of 30° with the horizontal and with a velocity of $39.2ms^{-1}$. Find ,

A. Time of flight B. Range (R) C. Maximum height (H)

Watch Video Solution

6. A body of mass 5 kg moving with a velocity of $6ms^{-1}$ collide with another body of mass 2 kg which is at rest. Afterwards they move in the same direction as before. If the velocity of

the body of mass 2 kg $10ms^{-1}$, find the velocity and kinetic energy to the body of mass 5 kg.

Watch Video Solution

7. Find the potential energy of a sytem of four particle each of mass 5 kg placed at the vertices of a square of side 2m.

8. Two metal rods made up of iron $(K_1=79Wm^{-1}K^{-1})$ and brass $\left(K_2=109Wm^{-1}K^{-1}
ight)$ are of identical shape and size. These are fused at the junction. If the temperature at the free end of iron is at a steam point and brass at ice point then calculate the temperature at the junction, when the steady state is attained.

9. A wave travelling along a string is described by $Y(x,t)=0.005\sin(80x-3t)$ in which the numerical constants are in SI units. Calculate (i) amplitude (ii) the wavelength and (iii) the period and frequency of the wave.

