© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

KINETIC THEORY

One Mark Question And Answers

1. What does 'atom' in Greek mean?

(D)
Watch Video Solution
2. Name the ancient Indian scholar who introduced the concept of atom.

- Watch Video Solution

3. Name the ancient Greek scholar who prppounded the atomic hypothesis.

- Watch Video Solution

4. Who propounded the scientific 'atomic theory' (also
called molecular theory)?
5. Name the smallest chemical constituent of an element.

- Watch Video Solution

6. State Avogadro's hypothesis.

D Watch Video Solution

7. State Gay Lussac's law with relevance to the chemical reaction.
8. Write the postulates of Daltons Atomic theory.

- Watch Video Solution

9. Atoms of one element diifer form those of other elements. Say whether this statement is true of false.

- Watch Video Solution

10. What is meant by a free path ?

- Watch Video Solution

11. Give any one property of molecular force.

D Watch Video Solution

12. Give any one condition at which a real gas behaves as an ideal gas.

D Watch Video Solution

13. Relate Boltzmann costant and Universal gas constant.
14. Write the SI unit fo Boltzmann's constant.

D Watch Video Solution

15. Say whether two different gases have the same value of Boltzmann's constant or not.

- Watch Video Solution

16. Represent graphically that real gases approach ideal gas behaviour at low pressures and high temperatures.

- Watch Video Solution

17. Give any one condition at which a real gas behaves as an ideal gas.

- Watch Video Solution

18. State Boyle's law.

- Watch Video Solution

19. State Charles' law.

- Watch Video Solution

20. Write ideal gas equation for one mole of gas.
21. State Dalton's law of partial presuures.

- Watch Video Solution

22. What is meant by a partial presuure?

- Watch Video Solution

23. Write the formula to calculate the size of the molecule of gas.
24. Give the expression for the radius of a molecule.

- Watch Video Solution

25. Write the expression for the pressure exerted by a gas in terms of rms velocity.

- Watch Video Solution

26. Give the expression for the average distance (interatomic) between atoms.
27. State law of equipartition of energy.

- Watch Video Solution

28. Give the expression for internal energy of a monotamic gas.

- Watch Video Solution

29. How many degrees of freedom are there in there in the translatory motion of atoms?

- Watch Video Solution

30. Why is the number of degrees of freedom for rotatory motion taken as two diatomic gases?

(D) Watch Video Solution

31. The experimental values for specific heats of polyatomic gases are greater than the predicted values.

Suggest one probable method to improve the results.

- Watch Video Solution

32. Give the expression for the average difference between the successive collisions (also called mean free path).
33. How does the mean free path depend on the number density of molecules?

- Watch Video Solution

34. How does the mean free path depent on the diameter (size) of the molecules?

- Watch Video Solution

35. Give the expression for root mean square velocity of the molecules.
36. How does the internal energy of a system depent on pressure and volume?

D Watch Video Solution

37. How does root means square velocity depend on the mass of the molecule?

- Watch Video Solution

38. What is meant by translatory motion ?
39. What is meant by rotatory motion ?

- Watch Video Solution

40. What is meant by vibratory motion of a molecule?

- Watch Video Solution

41. Express ratio of specific heats of a gas in terms of degrees of frredom?
42. Define degrees of freedom of a molecule.

D Watch Video Solution

Two Mark Question And Answers

1. Give the expression for the average kinetic energy of a molecule.

D Watch Video Solution

2. Show that the specific heat capacity of water in terms of universal gas constant.
3. Obtain the value of specific heat of water in terms of $J k g^{-1} K^{-1}$.

D Watch Video Solution

4. Give the expression for the vibrational energy of molecules?

D Watch Video Solution

5. Show that specific heat capacity of a solid is equal to three times that of Gas constant ($C=3 R$)

- Watch Video Solution

6. Draw PV indicator diagram for the ideal and real behaviours of a gas.

- Watch Video Solution

7. Draw T-V curves for ideal and real gas behaviours.

- Watch Video Solution

8. Write the expression for pressure exerted by an ideal gas on the walls of a container and explain the symbols

- Watch Video Solution

9. Express average K.E. per molecule of two gaseous mixtures?

- Watch Video Solution

Three Mark Question And Answers

1. State the postulates of Kinetic theory of ideal gases.

- Watch Video Solution

2. Distinguish between gas constant and universal gas constant.

- Watch Video Solution

3. State and explain Dalton's low of partial pressures.

- Watch Video Solution

Fivemark Question And Answers

1. Obtain an expression for the pressure of an ideal gas
from the kinetic theory of an ideal gas.
2. Show that the average K.E. per molecule does not depends on pressure, volume or nature of gas staring from the expression of pressure of an ideal gas.

- Watch Video Solution

3. Briefly discuss the law of equipartition of energy.

- Watch Video Solution

4. Write a note on mean free path.

Numericals With Solutions

1. If atomic mass of Argon $=39.9 \mu$, molecular mass of chlorine $=70.9 \mu$ then find the ratio of r.m.s speed of argon atom and chlorine gas molecule.

- Watch Video Solution

2. Give the expression for the radius of a molecule.
3. If for a given volume and temperature, partial pressure of monatomic and diatomic gases maintain the ratio 3 :

2 then compare the number of moles of gases.

- Watch Video Solution

4. If the ratio of partial pressures of two gases is $3: 2$ and atomic mass of monoatiomic gaw is 20.2 unit and molecular mass of diatomic gas is 32.0 unit, then compare their mass densities.
5. Estimate the size of fluorine (liquid) molecule, given its atomic mass $19.01 u$ and density $1.14 \times 10^{3} \mathrm{kgm}^{-3}$.

D Watch Video Solution

6. Estimate the size of fluorine (liquid) molecule, given its atomic mass 19.01 u and density $1.14 \mathrm{kgm}^{-3}$.

D Watch Video Solution

7. For a molecule of diameter $2.5 \AA$ and number density of molecule 2.1×10^{25} molecule $/ \mathrm{m}^{3}$, calculate average distance (mean free path) covered by a molecule between two successive collisions.

- Watch Video Solution

8. Calculate the rms speed of an ideal gas molecule of mass $2.99 \times 10^{-25} \mathrm{~kg}$ at 300 k .

- Watch Video Solution

9. An oxygen cylinder of volume 30 litres has an intial gauge pressure of 15 atm and a temperature of $27^{\circ} \mathrm{C}$.

After some oxygen is withdraw from the cylinder, the gauge pressure drops to 11 atm and its temperature drops to $17^{\circ} C$ Estimate the mass of oxygen taken out of the cylinder
$\left(R=8.31 \mathrm{Jmole}^{-1} K^{-1}\right.$, molecular mass of $\left.O_{2}=32 \mathrm{unit}\right)$.

- Watch Video Solution

10. An air bubble of volume $1.0 \times 10^{-6} \mathrm{~m}^{3}$ rises from the bottom of a lake 40 m deep at a temperature $12^{\circ} \mathrm{C}$. To what volume does it grow when it reaches the surface, which is at a temperature of $35^{\circ} \mathrm{C}$?

- Watch Video Solution

11. Estimate the total number of air molecules in a room
capacity $25 \mathrm{~m}^{3}$ at a temperature of $27^{\circ} \mathrm{C}$ and 1 atm pressure.
12. Estimate the average thernal energy of a helium atom at (i) room temperature $27^{\circ} \mathrm{C}$ (ii) the temperature on the surface of the sun (6000k) and (iii) the typical core temperature of the star (10 million kelvin).

- Watch Video Solution

13. At what temperature is the root mean square speed of a an atom is an argon gas cylinder equal to the rms speed of helium gas at $-20^{\circ} \mathrm{C}$? (atomic mass of $\mathrm{Ar}=$ 39.9 u and of $\mathrm{He}=4.0 \mathrm{u}$)
14. Estimate the mean free path and collision frequency of a nitrogen molecule in a cylinder containing nitrogen at 2.0 atm and temperature $17^{\circ} \mathrm{C}$. Take the radius of a nitrogen molecule to be roughly $1.0 \AA$. Compare the collision time with the time molecule moves freely between two successive collision $\left(\operatorname{Mof} N_{2}=28\right)$

D Watch Video Solution

15. From a certain apparatus, the diffusion rate of hydrogen has an average value of $28.7 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. The diffusion of another gas under the same conditions is measured to have an average rate of $7.2 \mathrm{~cm}^{3} s^{-1}$. Identify the gas (NCERT).

- Watch Video Solution

16. The specific heat at constant volume of a certain metal is $420 \mathrm{Jkg}^{-1}$. Write the chemical formula of its chloride, if contains 0.345 fraction of the metal (NCERT).

- View Text Solution

17. A vessel contains two non - reactive gases : neon (atomic mass $=20.2 \mathrm{u}$) and oxygen (atomic mass $=32,0 \mathrm{u}$).

The ratio of their partial pressures is $3: 2$ Estimate the ratio of (a) number of molecule and (b) mass density of neon and oxygen in the vessel.
18. The ratio of specific heats of a gas is 1.41 . If at $N T P_{1}$ the volume occupied by the gas is $0.0224 m^{3}$, then calculate the molar specific heats at constant volume and pressure.

- Watch Video Solution

19. Calculate the internal energy of a diatomic (rigid) gas molecule at $27^{\circ} \mathrm{C}$. Estimate C_{p} and C_{v}.
