©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

LAWS OF MOTION

One Mark Question

1. Define inertia.

2. Define force.

D Watch Video Solution
3. Define linear momentum.

D Watch Video Solution
4. Mention the absolute unit of linear
5. Say whether linear momentum is a scalar or a vector physical quantity.

- Watch Video Solution

6. What is the change in linear momentum of a body describing uniform circular motion between the ends of a diameter.

7. Define impulsive force.

- Watch Video Solution

8. Define impulse .

D Watch Video Solution

9. What is the unit of impulse?

D Watch Video Solution
10. What does a constant force applied on a body produce?

D Watch Video Solution

11. Define the $S I$ unit of force.
(Watch Video Solution
12. Mention the gravitational unit of force?

Watch Video Solution

13. Write the relationship between gravitational unit and absolute unit of force.

D Watch Video Solution

14. Define 1 kgwt of force.

D
 Watch Video Solution

15. State Newton's I law of motion.

D Watch Video Solution

16. State Newton's $I I$ law of motion.

D Watch Video Solution
17. State Newton's $I I I$ law of motion.
18. What definitions do we get from the

Newton's I law of motion?

D Watch Video Solution
19. What information does Newton's $I I$ law of motion provide us?

D Watch Video Solution
20. State and prove conservation of linear momentum in case of collision of two bodies.

D Watch Video Solution
21. What is the unit of impulse?

- Watch Video Solution

22. INERTIAL FRAME OF REFERENCE

23. Write the equation for a pseudo force on a body in a lift uniformly accelerated upwards.

- Watch Video Solution

24. Give the expression for pseudo force on a
body in a lift uniformly accelerated downwards.
25. What will be the pseudo force on a body in a lift uniformly accelerated downwards with an acceleration equal to the acceleration due to gravity?

- Watch Video Solution

26. What is frame of reference?

- Watch Video Solution

27. Name any one force that acts at a distance.

D Watch Video Solution

28. Which force is the wekest force of nature?

D Watch Video Solution
29. Which is the strongest force of nature?
30. Compare electrostatic force with gravitational force and strong nuclear force.

- Watch Video Solution

31. Compare strong nuclear force with electric force.
32. A boxer becomes more tired boxing in the air than against the opponet. Why?

D View Text Solution

33. Can a system of blanaced forces acting on
a body produce an acceleration in it.

- Watch Video Solution

34. How is the linear momentum related to the mass of a body?

D Watch Video Solution
35. Give the expression for potential energy stored in a spring.

- Watch Video Solution

36. What is friction?

- Watch Video Solution

37. Define frictional force.

- Watch Video Solution

38. What is static friction?

- Watch Video Solution

39. Is static force a slef adjusting force?

- Watch Video Solution

40. What is meant by limiting friction?

- Watch Video Solution

41. Define coefficient of static friction.

- Watch Video Solution

42. Define angle of friction.

- Watch Video Solution

43. Draw a graph of force of friction $\frac{v}{s}$ applied force.

D Watch Video Solution

44. Define kinetic friction.

- Watch Video Solution

45. Define coefficient of kinetic friction.

D Watch Video Solution

46. What is rolling friction?

- Watch Video Solution

47. Define coefficient of rolling friction.

- Watch Video Solution

Two Mark Question

1. What information do we get from Newton's

III law of motion. Give an example.

- Watch Video Solution

2. Define spring constant. What does the negative sign in the expression indicate?

- Watch Video Solution

3. A person falling on a pile of sponge beds does not get hurt. Explain why?

- Watch Video Solution

4. An athlete takes a long run before the jump.

Explain why?

- Watch Video Solution

5. A gun recoils when the a bullet is fired from
it. Explain why?
6. What is meant by angle of contact?

Represent the angle of contact with a neat labelled diagram.

- Watch Video Solution

7. Draw a neat labelled diagram to represent the angle of repose.

- Watch Video Solution

8. Can Newton's law be applied for a variable mass? Give an example.

- Watch Video Solution

9. Distinguish between impulse and impulsive force.
10. Give any two examples of reducing the impulse.

D Watch Video Solution
11. Give any two examples for contact forces.

D Watch Video Solution

12. Relate coefficient of limiting friction with
the angle of repose.

- Watch Video Solution

13. Give any two evils (disadvantages) of friction.

- Watch Video Solution

14. Given any two advantages of friction.

- Watch Video Solution

15. Mention any two methods of reducing

friction .

D Watch Video Solution
16. State the laws of friction.

D Watch Video Solution

Three Mark Question

1. State and explain Newton's first law of motion.

D Watch Video Solution
2. State and explain Newton's II law of motion
(D) Watch Video Solution
3. State and explain Newton's III law of motion ?

- Watch Video Solution

4. Distinguish between inertial and noninertial frames of reference.

- Watch Video Solution

5. Distinguish between mass and weight.

- Watch Video Solution

6. Explain the law of conservation of linear momentum with examples.

D Watch Video Solution

7. Is static force a slef adjusting force?

- Watch Video Solution

1. Derive $\vec{F}=m \vec{a}$ where the symbols have their usual meanings.

D Watch Video Solution

2. State and prove conservation of linear momentum in case of collision of two bodies.

3. State the laws of friction.

D Watch Video Solution

4. Mention any two methods of reducing friction.
(Watch Video Solution

Numericals With Solutions

1. A force of $100 N$ acts on a body of mass
0.25 kg for $2 s$. Calculate acceleration of the body and its change in momentum.

D Watch Video Solution

2. A driver of a car driving at 72 kmph notices a child on the road at a distance of 50 m . If the weight of the car including the driver is 750 kg wt then calculate the resistive force applied on
the wheels by the brakes, if the car, comes to stop just in front of the child.

D Watch Video Solution

3. Calculate the force required to stop a ship of mass $5 \times 10^{6} \mathrm{~kg}$ moving at 40 kmph in a
time interval of 10 minute. How far will it travel
before coming to rest. (Neglect water resistance).

D Watch Video Solution

4. A gun of mass 20 kg fires a bullet of mass
0.010 kg in a horizontal direction. If the gun
recoils at $0.05 \mathrm{~ms}^{-1}$, then calculate the velocity of the bullet. If the gun has to be stopped within a period of $0.1 s$ then what force should be exerted on the gun?

D Watch Video Solution

5. A helicopter of mass 1000 kg rises with
vertical acceleration of $15 \mathrm{~ms}^{-2}$. The crew and
passengers together weigh 300 kg . Give the
magnitude and direction of
(a) force on floor by the crew and passengers.
(b) action on the rotor of the helicopter on the surrounding air.
(c) force on the helicopter due to the surrounding ($g=10 \mathrm{Nms}^{-2}$)

- Watch Video Solution

6. A monkey of mass 40 kg climbs on a rope
which can stand a maximum tension of 600 N .
In which of the following cases will the rope
break? The monkey
(a) climbs up with acceleration of $6 m s^{-2}$.
(b) climbs down with acceleration of $4 m s^{-2}$
(c) climbs up with uniform speed of $5 m s^{-1}$
(d) falls down the rope nearly freely under gravity $\left(g=10 m s^{-2}\right)$.

D Watch Video Solution

7. A bombshell of mass explodes such that the
broken masses are in the ratio $1: 1: 3$. The
ratio two pieces of equal mass fly with the
same speed at right angles to each other with
a velocity of $100 \mathrm{~ms}^{-1}$. Find the direction and
velocity of the third fragment of the shell.

What will be the total kinetic energy of the fragments.

D Watch Video Solution

8. Two railway wagons weighing 5000 kg and

7500 kg are moving at $10 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ in
the same direction. After collision they stick together and move with the same velocity.

Find the common speed and direction of motion.

D Watch Video Solution

9. A bomb shell of mass 100 kg travelling at $500 \mathrm{~ms}^{-1}$ explodes into two fragments of masses in the ratio $2: 3$. The smaller one flies at an angle of 45° and the heavier at 60° with respect to the X-axis in the (x, y) and
$(x,-y)$ planes respectively. Calculate their velocities.

Watch Video Solution

10. A car is moving at 72 kmph . Brakes are suddenly applied causing all the tyres to skid. How far will the car move before coming to a stop (given $g=9.8 m s^{-2}$ and $\mu=0.2$)?

D Watch Video Solution

11. An aeroplane clears the runway path of 300 m with a final take off speed of 234 kmph .

If the total mass of the plane is 50000 kg and
friction between the wheels and the road is
0.4 , then calculate the thrust on the engine $\left(g=10 m s^{-2}\right)$.

D Watch Video Solution

12. A wooden block is pressed on a wall. The coefficient of friction between the wall and wood is 0.35 . If the mass of the wood is 1 kg then calculate the force of reaction required to hold the block on the wall which just causes
sliding. $\left(g=9.8 m s^{-2}\right)$.
13. Two blocks $m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}$ are placed one upon the other. m_{1} is kept on m_{2}.

The force of static friction between m_{1} and m_{2} is 0.2 and between m_{2} and the horizontal surface and the floor is 0.28 . Calculate the maximum force that can be applied on m_{2} so that m_{1} and m_{2} does not get separated. $\left(g=10 m s^{-2}\right)$
14. A block slides down a rough inclined plane of inclination 45°. If the coefficent of kinetic friction is 0.5 , find the acceleration of the sliding block. $\left(g=10 m s^{-2}\right)$.

D Watch Video Solution

15. A force of $56.6 N$ is sufficient to pull a block of wood of mass 10 kg on a horizontal surface.

Calculate the angle of friction.

Watch Video Solution

