©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS

 PHYSICS (KANNADA ENGLISH)
MECHANICAL PROPERTIES OF FLUIDS

One Mark Questions And Answers

1. What is a fluid?

2. Define fluid thrust.

D Watch Video Solution

3. State Pascal's law.

Watch Video Solution
4. Define fluid pressure (Gauge pressure).

5. Mention the S.I unit of pressure?

D Watch Video Solution

6. Mention any one application of pascal's law.

- Watch Video Solution

7. State Archimedes' principle.
8. What is buoyancy or force of buoyancy ?

- Watch Video Solution

9. Write the dimensional formula for Pressure

D Watch Video Solution

10. How does liquid pressure depend on the
depth of a point below the surface of a liquid
11. An iron nail sinks whereas ships fleat. Give one reason for it.
(D) Watch Video Solution
12. Relate atmospheric pressure in terms of barometric pressure.
13. What portion of ice floats above the surface the water?

D Watch Video Solution
14. What is one torricelli of pressure?
(Watch Video Solution
15. Give an example for an incompressible substance.
16. Give an example for a compressible substance .

(D) Watch Video Solution

17. Define standard atmospheric pressure.

D Watch Video Solution
18. Name the device to measure atmospheric pressure.

D Watch Video Solution
19. Who invented Barometer?

D Watch Video Solution
20. Write the equation connected to a hydralic
lift?
21. What is hydrodynamics?

- Watch Video Solution

22. What is a streamline?

- Watch Video Solution

23. What is a streamline motion?

24. What is turbulent motion?

- Watch Video Solution

25. Can two streamlines intersect each other, in
a flowing liquid?
(D) Watch Video Solution

26. Give the expression for pressure energy.

D Watch Video Solution

27. State and explain Bernoulli's Principle.

- Watch Video Solution

28. How does the velocity of streamline flow of
a liquid, depend on the area of cross section?
29. How does the pressure of liquid depend on the area 'of cross section of tube of flow?

D Watch Video Solution

30. How does the pressure of liquid depend on
the speed of flow?

D Watch Video Solution
31. Give the mathematical representation of Bernoulli's theorem.

- Watch Video Solution

32. What is an ideal fluid?
(D) Watch Video Solution
33. When does the flow of the liquid become turbulent?

- Watch Video Solution

34. Name any one device that works on Bernoulli's principle.
(D) Watch Video Solution
35. What is a cohesive force?
(Watch Video Solution
36. What is an adhesive force?

D Watch Video Solution

37. Say whether molecular forces obey inverse square law of distance or not.

D Watch Video Solution

38. Say whether molecular force is a saturated
force or not.
39. Define surface energy.

D Watch Video Solution

40. Give the expression for surface tension of a
liquid in a capillary tube.
41. Define surface tension. Why there is no surface tension in gases?

- Watch Video Solution

42. Define angle of contact.
(D) Watch Video Solution
43. Give an example of a liquid which wets glass.

- Watch Video Solution

44. Give an example of a liquid which does not wet glass.

- Watch Video Solution

45. Why drops and bubbles are spherical in shape?

D
 Watch Video Solution

46. Why is a big drop of liquid oblate?

- Watch Video Solution

47. Write the dimensional formula for surface tension.

- Watch Video Solution

48. Write the SI unit of surface tension.
49. Why does oil rise in a wick?

D Watch Video Solution

50. What is a capillary tube?

D Watch Video Solution

51. How are radius and rise of liquid in a capillary tube related?

- Watch Video Solution

52. How does the surface tension of a liquid vary with temperature?

D Watch Video Solution

53. What is the efect of adding detergents to
water?
(Watch Video Solution

54. What is meant by capillarity?

(Watch Video Solution

Two Mark Questions And Answers

1. State the conditions for stable equilibrium
for fleating bodies.

2. Mention any one application of pascal's law.

D Watch Video Solution

3. Write the equation of continaity.

D Watch Video Solution
4. Give two limitations of Beruoulli's theorem.

D Watch Video Solution

5. What is meant by critical velocity of a liquid?

Explain the characteristic of turbulent motion.

- Watch Video Solution

6. Mention any two applications of Bernoulli's theorem.

- Watch Video Solution

7. Why bullets/missiles are cylindrical and given

 an initial spin.
- Watch Video Solution

8. Why is that the life boat often collides with
the mother ship?

Watch Video Solution
9. If ' H ' is the height of liquid in a cylindrical
container and ' h ' is the height of orifice (hole)
in the cylinder, then give the formula for
(i) Velocity of efflux and
(ii) Horizontal range of the jet.

- Watch Video Solution

10. For what value of ' h ' of orifice below the jet
the range will be maximum ?

- View Text Solution

11. What is magnus effect ?

D Watch Video Solution

12. Name the two types molecular forces.

(Watch Video Solution

13. Water sticks to glass whereas mercury does not. Explain.
14. Distinguish between cohesive and adhesive forces.
(Watch Video Solution
15. Give any two illustrations of surface tension.

D Watch Video Solution
16. Pond skaters walk on the surface of water.

Give reason for it.

- Watch Video Solution

17. Explain the action of detergents.

D Watch Video Solution
18. When it is raining, it is not advised to resist
water drops falling on the tent from inside the
tent. Explain Why?

- Watch Video Solution

19. What is meant by surface energy? Give the expression for surface energy.

- Watch Video Solution

20. Give the expression for the energy evolved, when the surface area of the liquid is decreased.

- View Text Solution

21. Give the expression for the excess pressure in a soap bubble.

- Watch Video Solution

22. Give the expression for the excess pressure across curved surfaces facing opposite to each other
23. Give the expression for the excess pressure across curved surfaces facing in the same direction.

- Watch Video Solution

24. State Newton's law of viscosity of fluids in motion.

- Watch Video Solution

25. Give Stokes formula and explain the symbols used.

- Watch Video Solution

26. Give an expression for the terminal speed of a small spherical object in a homogenous surrounding fluid.

- Watch Video Solution

27. What is meant by critical velocity of a liquid? Explain the characteristic of turbulent motion.

D Watch Video Solution

28. State Stokes law.

D Watch Video Solution

Three Mark Questions And Answers

1. Arrive at an expression for pressure at point due to a liquid.

D Watch Video Solution

2. Distinguish between streamline and turbulent flows.

- Watch Video Solution

3. State and explain Bernoulli's Principle.
4. Explain the uplift of an air foil in the aircraft by using Bernoulli's theorem.

D Watch Video Solution

5. Explain the flow of blood and heart attck by

 using the principle of Bernoulli's theorem.- Watch Video Solution

6. Show that terminal velocity of a sphere falling through a viscous medium is proportional to the square of its radius.

- Watch Video Solution

Numericals With Solutions

1. A steel ball of radius $0.5 \times 10^{-2} m$ is dropped in a long jar containing olive oil of coefficient of viscosity $84 \times 10^{-3} \mathrm{Nsm}^{-2}$ and
density $920 \mathrm{kgm}^{-3}$. If the density of the solid ball is $7.8 \times 10^{3} \mathrm{kgm}^{-3}$ then calculate the terminal velocity attained by the steel ball.

D Watch Video Solution

2. An air bubble of diameter $1 \times 10^{-3} m$ rises
in water. Calculate the terminal velocity of the bubble.
3. Calculate the critical velocity of water in a tube of diameter 0.25 m . Given Reynold number
$=2500$, density
of
water
$=10^{3} \mathrm{kgm}^{-3}$ and \quad viscosity $=10^{-3} \mathrm{Nsm}^{-2}$

D Watch Video Solution

4. With what terminal velocity will an air bubble 0.8 mm in a diameter rise in a liquid of viscosity of $0.15 \mathrm{Nsm}^{-2}$ and specific gravity

$$
0.9 ?\left(\rho_{\mathrm{air}}=1.2 \mathrm{kgm}^{-3}\right)
$$

- Watch Video Solution

5. Two spherical raindrops of equal are falling vertically through air with a terminal velocity of
$1 m s^{-1}$. What would be the terminal speed if the two drops were to coalesce to form a large spherical drop.
6. A plate of area $10 m^{2}$ is made to move horizontally with a speed of $0.5 m s^{-1}$ by applying a force over the surface a liquid. If the depth of the liquid is 2.5 m , coefficient of viscosity of liquid is $10^{-3} \mathrm{Nsm}^{-2}$, then calculate the horizontal force needed to move the plate.
7. A solid sphere of radius R floats in water to a depth of $\left(\frac{R}{2}\right)$. Find the relative density of the material of the solid.

- Watch Video Solution

8. When a bouler of mass 240 kg is placed on a floating iceberg, it is found that the iceberg just sinks. What is the mass of iceberg? (Given R.D. of ice=0.90 and density of sea water=1.02).
9. When a ship floats in water, its one fifth volume remains submerged. The maximum weight that can be placed on the ship is 10,000 tons. Calculate the weight the empty ship $\left(g=10 m s^{-2}\right)$.

- Watch Video Solution

10. A piece of iron of density $7.8 \times 10^{3} \mathrm{kgm}^{-3}$
and volume $10^{-4} \mathrm{~m}^{3}$ is fully immersed in water.
Calculate (i) weight of the iron piece in air (ii)
upthrust of water on the iron piece (iii) apparent weight of the iron piece in water. Given $g=10 m s^{-2}$

D Watch Video Solution

11. A metal cube of side 0.10 m , density $8500 \mathrm{kgm}^{-3}$ is suspended by a thread and completely immersed in a liquid of density $2000 \mathrm{kgm}^{-3}$. Find the tension in the sting $\left(g=9.8 m s^{-2}\right)$.
12. An injection syringe has a needle with an area of cross-section $1.96 \times 10^{-7} m^{2}$. The piston end of the syringe has an area of
$3.14 \times 10^{-4} \mathrm{~m}^{2}$. If a force of 0.098 N is applied then calculate the force on the blood vessel.

What fraction of the total force applied is executed on the vessel.?
13. A sample Of milk diluted with water has a density of $1050 \mathrm{kgm}^{-3}$, If pure milk has a density of $1080 \mathrm{kgm}^{-3}$, then find the percentage of water by vehmse in the milk.

- Watch Video Solution

14. A gold crown adulterated with silver was
found to weigh 0.540 kg in air and 0.498 kg in water. If the densities of gold and silver are $13900 \mathrm{kgm}^{-3}$ and $10500 \mathrm{kgm}^{-3}$, then calculate the mass of silver mixed with gold.
15. Water is flowing through a cylindrical pipe of cross-sectional area $0.04 \pi \mathrm{~m}^{2}$ at a speed of $1.0 \mathrm{~ms}^{-1}$. If the diameter of the pipe is halved, then find the speed of flow of water through it.

- Watch Video Solution

16. Water flows through a horizontal pipe of varying cross-seetions. The pressure of water
equals 0.1 m of mercury at a place where the velocity of flow is $0.4 m s^{-1}$. What will be the pressure at another place, where the velocity of flow is $0.5 \mathrm{~ms}^{-1}$.

D Watch Video Solution

17. The reading of a barometer fitted with a closed pipe is $3.5 \times 10^{5} \mathrm{Nm}^{-3}$. When the valve ef the pipe is opened, the pressure read by barometer reduces to $3.0 \times 10^{5} \mathrm{Nm}^{-2}$.

Calculate the velocity of flow of water in the pipe.

- Watch Video Solution

18. The velocity of flow of water in a horizontal pipe is $10.0 \mathrm{~ms}^{-1}$. Calculate the velocity head of water, given $g=9.8 m s^{-1}$.

- Watch Video Solution

19. For a pressure at 1.2 atm, calculate the pressure head of water.

- Watch Video Solution

20. A water tank filed with water has a hole in
its wall at a distance of 2.5 m below its free
surface. Find the velocity of efflux of water from this office. If the diameter of the orifice is

5 mm , find the rate of flow of water $\left(g=9.8 m s^{-2}\right)$.
21. An L-shaped tube is held in a stream. It has
a small orifice at the upper end which is 0.106 m above the surface of water. If water in stream is flowing at $2.45 \mathrm{~ms}^{-1}$ and entering at the other end of the tube, then find the height of the jet of water coming out from the orifice.
22. A tank is filled with water upto a height $\mathrm{H}=1.00 \mathrm{~m}$. Water is allowed to come out of a hole in one of the walls at a depth $h=0.20 \mathrm{~m}$ below the surface of water. Calculate the range of the jet of water from the orifice.

D Watch Video Solution

23. Calculate pressure inside a small air bubble of radius $10^{-4} m$ radius found just below the surface of water (given S.T. of water

$$
\left.=0.072 \mathrm{Nm}^{-1} \text { and } 1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}\right)
$$

- Watch Video Solution

24. A capilaary tube of radius 0.35 cm is dipped in water. To what height will water inside the capilary raise? (Given S.T. of water $=0.072 \mathrm{Nm}^{-1}, \theta \quad$ between \quad water-glass contact $\theta=0^{\circ}$)
25. Calculate the amount of work done in spliting a water droplet of radius 0.5 mm into 8 million identical droplets. Given surface tension of water $=0.072 \mathrm{Nm}^{-2}$.

D Watch Video Solution

26. Calculate the amount of work done is blowing a soap bubble to a radius of 0.05 m by blowing the soap solution which has a surface tension of $0.03 \mathrm{Nm}^{-2}$.
27. Calculate the excess pressure inside a soap bubble of radius 1.0 mm . (Given surface tension of soap solution $\left.=0.040 \mathrm{Nm}^{-1}\right)$.

D Watch Video Solution

28. Calculate excess pressure inside an air
bubble of radius 1.0 mm and just below the surface of water. What will be the pressure inside the soap bubble?
29. Calculate the amount of work done in increasing the diameter of a soap bubble from 2 cm to 5 cm (Given, surface tension of the soap solution $=3 \times 10^{-2} \mathrm{Nm}^{-1}$)

D Watch Video Solution

30. A flim of water if found between two straight parallel wires of length 0.10 m each separated by $5 \times 10^{-3} \mathrm{~m}$. If their separation is
increased by $1 \times 10^{-3} \mathrm{~m}$, while maintaining their parallelism, how much work will have to be done? (S.T. of water is $7.2 \times 10^{-2} \mathrm{Nm}^{-2}$).

D Watch Video Solution

31. Water rises in a capilaary tube to a height of 2.0 cm . In another capilary tube of radius one
third of the first, water remains at a partricular height inside it. Find the height of water in the second capillary.
32. The high domes of ancient buildings have structural value. It arises from pressure difference on the two faces dur to curvature
(as in soap bubbles). There is a dome of radius

5 m and uniform thickness. The surface tension
of its masonry structure is about $500 \mathrm{Nm}^{-1}$.

Treated as hemispherical, calculate the maximum load the done can support.

- Watch Video Solution

33. The diameter of the vertical tubes of a U tube are 10 mm and 4 mm . The tubes are filled with water. What wil be the difference of heights of water coloumns in the tubes? (angle of contact $\theta=0^{\circ}$)

- Watch Video Solution

