đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

MOTION IN PLANE

One Marks Questions And Answers

1. What is a physical quantity ?

2. What is a scaler quantity ?

D Watch Video Solution

3. What is a vector physical quantity ?

D Watch Video Solution

4. Name the type of physical quantity which
can be multiplied or divided or added or
subtracted by simple arithmetic rules.

D Watch Video Solution

5. Name the physical quantity which requires
vector addition and special laws for multiplication.

D Watch Video Solution

6. What are polar vectors?

D Watch Video Solution

7. What are axial-vectors ?

D Watch Video Solution

8. What are co-initial or concurrent or coincidental vectors ?

D Watch Video Solution
9. What are coplanar vectors?

- Watch Video Solution

10. What is a unit vector?

- Watch Video Solution

11. What is a null vectors ?

D Watch Video Solution
12. What are parallel vectors ?
13. What is meant by position vector?

- Watch Video Solution

14. State the law of parallelogram of addition of two vectors?

15. State the law of triangle of addition of two

vectors?

D Watch Video Solution
16. State the law of polygon of addition of vectors.
17. Find the magnitude of vector $\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$

- Watch Video Solution

18. What is the angle between the two vectors whose dot product is zero?

D Watch Video Solution
19. What is the angle between the two whose cross product is zero ?

- Watch Video Solution

20. Pick the axial vector from the following :
velocity, acceleration, force and angular momentum.

- Watch Video Solution

21. Pick the polar vector from the following :
angular velocity, torque, angular momentum, force.

- Watch Video Solution

22. Linear speed of a particle is given by
$v=r \omega$. Represent velocity in the vector form.

- Watch Video Solution

23. Linear acceleration of partcle is given by
$a=r \propto$. Represent acceleration in vector from.

D Watch Video Solution

24. Represent angular momentum of a particle
in terms of linear momentum in a vector form.

D Watch Video Solution
25. Write the horizontal component of a vector that makes ' θ ' with respect to the horizontal.

D Watch Video Solution

26. Write the vertical component of a vector
that makes ' θ ' with respect to the horizontal.

- Watch Video Solution

27. Find the unit vector $\vec{A}=-3 \hat{i}+4 \hat{j}+5 \hat{k}$

D Watch Video Solution

28. Say whether $\vec{A} \cdot \vec{B}$ is commulative.

D Watch Video Solution
29. Say whether $\vec{A} \times \vec{B}$ is commulative.
30. Give an example for scaler product of two vectors.

D Watch Video Solution
31. Give an example for vector product of two vectors.

- Watch Video Solution

32. What is meant by resolution of a vector ?

- Watch Video Solution

33. Represent scalar product of two vectors mathematically.

- Watch Video Solution

34. Represent vector product of two vectors mathematically

- Watch Video Solution

35. Why is $\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0$?

- Watch Video Solution

36. Why is $\hat{i} . \hat{j}=\hat{j} . \hat{k}=\hat{k} . \hat{i}=0$

- Watch Video Solution

37. If $\vec{A} \cdot \vec{B}=|\vec{A} \times \vec{B}|$ then fibnd the angle between \vec{A} and \vec{B}
38. The resultant of two vectors of equal magnitude is equal to the magnitude of either of the two vectors. What is the angle between the two vectors?

- Watch Video Solution

39. Represent cross product of two vectors
pictorially.
40. Represent dot product of two vectors pictorially.

- Watch Video Solution

41. What is the net force acting on a body in a state of static equillibrium ?

- Watch Video Solution

42. What are concurrent coplanar forces ?

- Watch Video Solution

43. Define resultant force.

- Watch Video Solution

44. Define equlibrant force.

- Watch Video Solution

45. Which of the following forces maintains
the static equilibrium of a body, resulant or equilibrant ?

- Watch Video Solution

46. State lami's theorem.

- Watch Video Solution

47. State converse law of triangle of forces.

- Watch Video Solution

48. If P and Q are two concurrent coplanar forces than find the maximum and minimum of the resultant of the two.

D Watch Video Solution
49. What is meant by resolution of a vector ?

50. Mention the two rectangular components

 of a vector 'A'
- Watch Video Solution

51. The resultant of two vectors of equal magnitude is equal to the magnitude of either of the two vectors. What is the angle between the two vectors?
52. If P and Q are two force vectors acting at right angle to each other from a single point on a body then express the magnitude of their resultant.

D Watch Video Solution

53. If a stronger force is twice as that of the weaker and their resultant acts a right angles to the weaker force then find the angle b / w the two forces.

54. State the law of parallelogram of addition

 of two vectors ?
- Watch Video Solution

55. Give the formula for direction of the resultant of two concurrent coplanar forces.

- Watch Video Solution

56. If the angle between two forces is greater than 90° then given the formula for their resultant.

- Watch Video Solution

57. If the angle b / w the two forces is greater
than 90° then give the the formula to find the direction of their resultant.

58. If a number of concurrent coplanar forces

 are acting on a point body, then give the condition for its static equilibrium.
- Watch Video Solution

59. If P_{x}, P_{y} and P_{z} are the magnitudes of forces on a body actin mutually at right angles to each other, then represent the resultant force on the body in (1) a scaler and (2) vector form.
60. A force of 10 N acts at 45° with X -axis,. What will be the x and y components of force?

D Watch Video Solution

61. What is a projectile?

- Watch Video Solution

62. What is a projectile motion ?

- Watch Video Solution

63. What is meant by trajectory ?

- Watch Video Solution

64. What is the angle of projectile?

- Watch Video Solution

65. What is time of flight of a projectile ?
66. What is the range of the projectile ?

- Watch Video Solution

67. Say whether there exists tangential acceleration for a particle describing uniform circular motion.

- Watch Video Solution

68. Say whether there exists tangential acceleration for a particle describing nonuniform circular motion.

D Watch Video Solution

69. Write the expression for the time of flight where terms have their usual notations.

D Watch Video Solution

70. Obtain an expression for Horizontal Range of a projectile.

D Watch Video Solution
71. Derive an expression for maximum height of a projectile .

- Watch Video Solution

72. Give the horizontal and vertical components of velocity of projection

- Watch Video Solution

73. Which of the two rectangular components of velocity remains constant throughout the time of flight ?

- Watch Video Solution

74. Relate range of the projectile in terms of the maximum height.

- Watch Video Solution

75. Relate maximum height in terms of time of flight.
(D) Watch Video Solution
76. Relate range of the projectile in terms of time of flight.

D Watch Video Solution
77. What is meant by uniform circular motion ?

D Watch Video Solution

78. Give the expression for centripetal force on
the particle executing uniform circular motion.

- Watch Video Solution

79. What is centripetal force?

- Watch Video Solution

80. What is centrifugal force?

- Watch Video Solution

81. Give the relation between linear speed and angular speed (ω).

D Watch Video Solution

82. Give the relation between linear acceleration and angular acceleration.

- Watch Video Solution

Two Marks Questions And Answers

1. Represent vector addition of two vectors graphically

- Watch Video Solution

2. Represent vector substraction of two vectors graphically.

D Watch Video Solution

3. What is meant by resolution of a vector ?

Watch Video Solution

4. Show that maximum range $=\frac{u^{2}}{g}$.

- Watch Video Solution

5. Show that for angles of projection θ and $90^{\circ}-\theta$, the range of the projectile is the same.
(D) Watch Video Solution
6. Write a neat and labelled diagram showing angle of banking and resolution of normal reaction force.

- Watch Video Solution

7. Represent resultant acceleration of a particle executing non-uniform circular motion by means of vector diagram
8. Show that $v=r \omega$.

D Watch Video Solution

9. Show that $a=r \omega$.

D Watch Video Solution
10. Define instantaneous velocity of a particle?

D Watch Video Solution
11. Define average velocity of a particle.

Represent the same in vector form.

D Watch Video Solution
12. Define average acceleration of a particle.

Represent average acceleration in a vector form.

- Watch Video Solution

13. Define instantaneous acceleration and represent the same in vector form.

D Watch Video Solution
14. Give the expression for instantaneous displacements of a projectile along ' x ' and ' y ' direction.

D Watch Video Solution
15. Give the expression for the time of flight and the maximum height reached by the projective.

- Watch Video Solution

16. Give the expression for the range of the particle. For what value of angle of projection of the particle is the range maximum ?
17. Represent the direction of velocity and acceleration of a particle travelling in a curved path.

- Watch Video Solution

Three Marks Questions With Answers

1. Distinguish between resultant and equilibrant forces.

2. State converse law of triangle of forces.

D Watch Video Solution

3. Define cross-product of two vectors.

- Watch Video Solution

4. Define cross-product of two vectors.

- Watch Video Solution

5. Write a note on banking of roads.

D Watch Video Solution

6. If v_{x} and v_{y} are the components of instantaneous velocity, then represent the velocity vectorially. Express the magnitude and direction of velocity.

D Watch Video Solution

7. Represent position vector of a particle in terms of velocity and acceleration vectors.

D Watch Video Solution

Five Marks Questions With Answers

1. Obtain an expression for the magnitude and direction of the resultant of two concurrent and coplanar forces.
2. Show that a projectile traces a path of a parabola.

D Watch Video Solution

3. Derive an expression for maximum height of a projectile .

- Watch Video Solution

4. Obtain an expression for
time of flight

- Watch Video Solution

5. Obtain an expression for Horizontal Range of a projectile.

D Watch Video Solution
6. Show that $a=\frac{v^{2}}{r}$ and hence obtain an expression for centripetal force.

- Watch Video Solution

Numericals With Solutions

1. Two forces 8 N and 5 N are acting at a point
on a body at an angle 120° then find the (i) magnitude and (ii) direction of their resultant.
2. Concurrent coplanar forces $10 \mathrm{~N}, 15 \mathrm{~N}, 20 \mathrm{~N}$,

25 N are acting on a body at
$0^{\circ}, 30^{\circ}, 45^{\circ}, 120^{\circ}$ w.r.t the x-axis respectively.

Calculate the magnitude and direction of their resultant.

- Watch Video Solution

3. Two forces P and $2 P$ act at a point. If the first
force is increased by 5 N and the other trebled,
the direction of the resultant is not altered then find ' P '

D Watch Video Solution

4. Two forces $\mathrm{P}=5 \mathrm{~N}$ and $\mathrm{Q}=10 \mathrm{~N}$ are acting at a point making an angle of 30° with each other.

What is the value of the dot product of P and

Q ?

D Watch Video Solution
5. Two forces 7 kgwt and 4 kgwt act at a point making an angle of 60° with each other. Find the magnitude and direction of the resultant.

D Watch Video Solution

6. Two concurrent forces 30 N and 40 N are acting at an angle of 60° with respect to each other. Calculate the magnitude and direction of the resultant.
7. A body of mass 1 kg is suspended by means of a string. It is then pulled aside by a horizontal force so that the string makes an angle of 30° with the vertical. Find the horizontal force.

- Watch Video Solution

8. The greatest and least resultant of two forces acting at a point are 29 N and 5 N . If each force is increased by 3 N , find the magnitude of
the resultant of the two new forces when they act at right angles to each other.

D Watch Video Solution

9. Two forces 12 N and 5 N are acting at right angles to each other. Find the magnitude and direction of the resultant force.

D Watch Video Solution

10. Simple pendulum of mass 3 Kg is pulled aside through an angle of 60° to the vertical.

Calculate the horizontal force and tension in the string.

D Watch Video Solution

11. When two forces are acting along the same direction, their resultant is $10 N$. When the same two forces are acting opposite to each other, their resultant is 8 N . Find the forces and
their resultant when the angle between them
is 45°

- Watch Video Solution

12. The square of the resultant of two equal
forces acting at a point is equal to three times
their product. Find the angle between them.

D Watch Video Solution
13. If a vector \vec{A} makes an angle of 60° with respect to the X -axis, then write the two rectangular components of the vector.

- Watch Video Solution

14. Find the cross product of $\vec{A}=3 \hat{i}+4 \hat{j}$
and $\vec{B}=(-3 \hat{i}+4 \hat{j})$

- Watch Video Solution

15. If a force $\vec{F}=(-3 \hat{i}+4 \hat{j}+2 \hat{k})$ acts on
a body and displaces it such that $\vec{s}=(4 \hat{i}-3 \hat{j}-2 \hat{k})$ then calculate the amount of work done by the force.

- Watch Video Solution

16. Find the angle between $2(\hat{i}+\hat{j})$ and \hat{i}

D Watch Video Solution

17. If $\vec{A}=3 \hat{i}+2 \hat{j}$ and $\vec{B}=4 \hat{j}-5 \hat{k}$ then
find
$|\vec{A}+\vec{B}|$

- Watch Video Solution

18. If $\vec{A}=3 \hat{i}+2 \hat{j}$ and $\vec{B}=4 \hat{j}-5 \hat{k}$ then
find
$|\vec{A}-\vec{B}|$

- Watch Video Solution

19. Find the sum of \hat{i} and \hat{k} and the angle between the resultant and \hat{i}.

D Watch Video Solution

20. Calculate the dot and cross product of $\vec{A}=30$ units along east and $\vec{B}=10$ units due north east.

D Watch Video Solution

21. A unit vector is represented by
$a \hat{i}+b \hat{j}+c \hat{k}$ If the values of 'a' and 'b' are 0.6
and 0.8 respectively, then find the value of ' c '.

D Watch Video Solution

22. Write the values of the following.
$\hat{i} .(\hat{i} \times \hat{j})$

D Watch Video Solution
23. Write the values of the following.
$\hat{k} .(\hat{i} \times \hat{k})$

D Watch Video Solution

24. Write the values of the following
$\hat{k} . \hat{k}$

- Watch Video Solution

25. A swimmer can swim with a velocity of 10
kmph w.r.t the water flowing in a river with a velocity of 5 kmph .

In what direction should he swim to reach the
point on the other bank just opposite to his
starting point?

- Watch Video Solution

26. A swimmer can swim with a velocity of 10
kmph w.r.t the water flowing in a river with a
velocity of 5 kmph .

What will be the time taken to reach the opposite side, if its is 1 km away ?

D Watch Video Solution

27. The angle between the vectors \bar{A} and \bar{B} is
60°. What is the ratio of $\bar{A} \cdot \bar{B}$ and $|\bar{A} \times \bar{B}|$?

D Watch Video Solution
28. Determine the unit vector which is perpendicular to both $\bar{A}=2 \hat{i}+\hat{j}+\hat{k}$ and $\bar{B}=\hat{i}-\hat{j}+\hat{k}$

D Watch Video Solution

29. Show that vectors $(i+2 j+3 \hat{k})$ and
$(2 \hat{i}-\hat{j})$ are perpendicular to each other.

D Watch Video Solution

30. The position of a particle is given by
$\bar{r}=\left(3.0 t \hat{i}-2.0 t^{2} \hat{j}+4.0 \hat{k}\right) \mathrm{m}$ where ' t ' is in
seconds. (a) Find \bar{v} and \bar{a} of the particle (b)
What is the magnitude and direction of velocity of the particle at $\mathrm{t}=0.0 \mathrm{~s}$?

D Watch Video Solution

31. Find the angular velocity of a particle moving around a circular path of radius 0.5 m with a linear speed of $10 \mathrm{~ms}^{-1}$
32. Calculate the angular acceleration of a particle executing uniform circular motion of radius 0.60 m and speed $5 m s^{-1}$.

D Watch Video Solution

33. If the tangential acceleration of a particle around a circular path is $0.5 m s^{-2}$ and radial acceleration is $0.65 \mathrm{~ms}^{-2}$, then calculate the resultant acceleration of the particle.
34. Calculate the centripetal force on a particle of mass 0.020 kg revolving around a circular path of radius 0.75 m and with a speed of $40 \mathrm{~ms}^{-1}$

- Watch Video Solution

35. An aircraft executes a horizontal loop of radius 500 m with a uniform speed of 5 machs.

Compare its centripetal acceleration with acceleration due to gravity.

D Watch Video Solution

36. A stone tied to one end of a string of radius 0.6 m is whirled in a horizontal circle with an angular speed of 120rpm. Calculate the radial acceleration and force exerted by the stone of mass 0.010 kg on the agent.
37. A simple pendulum of length 1.5 m is held horizontally and then released. If the mass of the system is 0.050 kg , then calculate the centripetal force at the bottom and maximum tension in the string (given $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$)

- Watch Video Solution

38. Calculate the minimum and maximum
tensions in a string of length 1 m , one end of which is tied to a stone of mass 0.010 kg and
whirled with a uniform speed of

$$
10 m s^{-1}\left(g=9.8 m s^{-2}\right)
$$

D Watch Video Solution

39. Given that the angle of banking is equal to 30° and radius of the circular path 50 m , calculate the maximum velocity with which a vehicle has to negotiate the turn so that the inner wheels do not take off the road $\left(g=9.8 m s^{-2}\right)$

D Watch Video Solution

40. A ball is thrown vertically upwards with a velocity of $50 \mathrm{~ms}^{-1}$ and the same later thrown at an angle for the maximum range. Compare the heights reached in the two cases $\left(g=9.8 m s^{-2}\right)$

D Watch Video Solution

41. A projectile is launched into space at an angle of 60° with an initial speed of $200 \mathrm{~ms}^{-1}$.

Calculate

maximum height

D Watch Video Solution

42. A projectile is launched into space at an angle of 60° with an initial speed of $200 \mathrm{~ms}^{-1}$.

Calculate
time of flight.

D Watch Video Solution
43. A projectile is launched into space at an angle of 60° with an initial speed of $200 \mathrm{~ms}^{-1}$.

Calculate
range of the projectile $\left(g=9.8 m s^{-2}\right)$.

D Watch Video Solution

44. A particle is projected into space at an
angle of 60° with an initial speed of $400 \mathrm{~ms}^{-1}$
.Calculate the instantaneous velocity of the projectile along the horizontal, vertical and
the resultant velocity at $\mathrm{t}=15 \mathrm{~s}$. Calculate instantaneous position of the particle along the horizontal and vertical $\left(g=9.8 m s^{-2}\right)$

D Watch Video Solution

45. A projectile is projected at an angle of 60°.

If the projectile just clears a cliff $5 \sqrt{3} \mathrm{~m}$ high, at a distance of 10 m from the point of projection, then calculate the range of the projectile. Also calculate the maximum height and time of flight.

Watch Video Solution

46. A ball is thrown at an angle of 30° with respect to the horizontal from the top of a tower 100 m high with a speed of $40 \mathrm{~ms}^{-1}$.

Calculate the time taken by the ball to reach the foot of the tower. With what velocity will the ball hit the ground ? $\left(g=10 \mathrm{~ms}^{-2}\right)$

- Watch Video Solution

47. An aeroplane flying at 540 kmph drops a missile towards the ground. If the height of the plane is 1000 m then calculate (i) time taken by the missile to hit the ground \& (ii) the horizontal distance covered by the missile form the initial point. $\left(g=9.8 m s^{-2}\right)$

- Watch Video Solution

