© 'doubtnut

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS

(KANNADA ENGLISH)

OSCILLATIONS

One Mark Questions And Answers

1. What is meantby the periodic motion of

 particle?2. Give an example for a periodic motion.

D Watch Video Solution

3. Give an example for a non-periodic motion.

-
 Watch Video Solution

4. What is the meant by an oscillatory motion.
5. Is circular motion of a particle on oscillatory motion?

D Watch Video Solution
6. Give an example for an oscillatory motion of a particle.

D Watch Video Solution

7. What is a SHM?
8. What is meant by a damped oscillation?

D Watch Video Solution

9. Define the term period of oscillation.

D Watch Video Solution
10. Mention the 'SI unit of period of oscillation.

- Watch Video Solution

11. Define frequency and period of oscillation.

- Watch Video Solution

12. Express the SI unit of frequency.

D Watch Video Solution

13. Give the simplest periodic mathematical
function of time.
14. Express time period ' T ' interval of angular frequency ' ω '.

(D) Watch Video Solution

15. If $f_{1}(t)=A \sin \omega t$ and $f_{2}(t)=B \cos \omega t$, then
say whether $f(t)=A \sin \omega t+B \cos \omega t$ is also periodic.

D Watch Video Solution
16. Say whether $y=e^{-\omega t}$ is periodic or not.

- Watch Video Solution

17. Say whether $y=\log (\omega t)$ is periodic or not.

- Watch Video Solution

18. Represent $y=A \sin \omega t$ graphically.

D Watch Video Solution

19. The equation to the x - projection of the radius
vector of the rotating paticle is given by
$x(t)=A \cos \left(\left(\frac{2 \pi}{4}\right) t+\frac{\pi}{4}\right)$. Find the period of the wave function.

- Watch Video Solution

20. If the displacement of a particle is given by
$y(t)=A \sin (\omega t+\phi)$, then find the maximum velocity of the particle.

- Watch Video Solution

21. If the displacement of a particle is represented
by $y(t)=A \sin (\omega t+\phi)$, then give the
expression for the maximum accleration of the particle.

D Watch Video Solution

22. What is the acceleration of a particle at the mean position?

D Watch Video Solution

23. Give the expression for the angular frequency in terms of force constant and mass of the particle executing SHM.

(D) Watch Video Solution

24. Give the expression for the potential energy of a particle executing SHM.

D Watch Video Solution
25. Drawn a graph of $a(t)$ defined by
$a(y)=-\omega^{2} t \cos (\omega t-\phi)$ where $\phi=0$

- View Text Solution

26. A spring of spring constant ' k ' is supported
from one end and tied by a mass ' m ' at the other
end. Write the formula to find the period of oscillation of the mass body. (Ignore the mass of the spring).

- Watch Video Solution

27. What is meant by a free oscillation?

D Watch Video Solution

28. What is the meant by a forced oscillation?

(D) Watch Video Solution

29. What is meant by resonance?

- Watch Video Solution

30. Give the expression for angular frequency of a
damped oscillator.
(D) Watch Video Solution
31. State the condition for resonance.

D Watch Video Solution

32. What will be the amplitude of simple harmonic motion at resonance in the absence of damping force?

D Watch Video Solution
33. When a system is induced to oscillation, say
whether the system oscillation to its natural
frequency force?

D Watch Video Solution

34. Under what condition will the motion of the simple pendulum be simple harmoic?

D Watch Video Solution

35. How does the period of oscillation of a particle depend on its phase constant?
36. How does the period of oscillation of a particle depend of its phase constant?

D Watch Video Solution

37. How does the period of oscillationof a particle depend on its amplitude?

(D) Watch Video Solution

38. Mention any two arbitrary initial conditions in order to determine the linear simple harmonic
motion.

D Watch Video Solution

39. If ' T ' is the period of osillation and ' A ' is the amplitude of oscillation then what will be the displacement of the particle corresponding to the time $\frac{T}{4}$?

D Watch Video Solution

40. If the initial phase of the particle is $\frac{\pi}{4}$, amplitude 0.2 m , period of oscillation 0.01s, then
write the expression for the instantaneous displacement of the particle.

D Watch Video Solution

Two Marks Questions With Answers

1. If $f_{1}(t)=A \sin \omega t$ and $f_{2}(t)=B \cos \omega t$ represent two functions, then express, then express the combined amplitude.
2. Give the expression for the torque acting on a simple pendulum about the support.

D Watch Video Solution

3. Give the exression for the angular accleration of the simple pendulum and give the meanings of the symbols used.
4. Give the expression for the period of oscillation of a simple pendulum along with the meanings of the symbols used.

D Watch Video Solution

5. Give the expression for the damping force acting on an oscillating system (simple pendulum) due to the pressure of surroundng medium along the the meanings of the symbols used.
6. Give the expression for total force acting on a mass suspended by a spring (of spring constant k) along with the meaning of the symbols used.

D Watch Video Solution

7. Give the differential equation for a damped motion of an oscillating system (mass attached to
a spring) along with the meanings of the symbols used.
8. Give the expression for mechanical energy of a damped oscillator along with the condition for a small damping?

- Watch Video Solution

9. Give the expression for differential equation of
a forced oscillating system along with meanings
of the symbols used.

D Watch Video Solution

10. Calculate the period of oscillation of a block of

 mass 0.5 kg attached to a spring (spring constant $100 \mathrm{Nm}^{-1}$) at one end.
D Watch Video Solution

11. Give the expression for acceleration and period of oscillation of two equal masses supported by a common spring and excited by applying equal force on the sides of the two masses.

D Watch Video Solution

12. If $y=\sin \omega t-\cos \omega t$ then S.T. the function represents a SHM.

D Watch Video Solution

Three Marks Questions With Answers

1. Arrive at the expression for kinetic energy of particle executing SHM.
2. Represent KE and PE of a particle executing SHM graphically.

D Watch Video Solution

Five Marks Questions With Answers

1. Arrive an expression for time period of simple pendulum.

- Watch Video Solution

2. Give the expression for the amplitude of a damped oscillation of a particle. Hence discuss the amplitude for driving frequency (a) far from natural frequency and (b) close to natural frequecny.

D View Text Solution

3. Given displacement of a particle executing SHM
$y(t)=A \cos (\omega t+\phi) . \quad$ Plot instantaneous
displacement, velocity and acceleration of particle with respect to time.
4. Arrive at the expression for time period of oscillation of a mass attached to a vertical spring.

D Watch Video Solution

Numericals With Solutions

1. Calculate total energy of a particle of mass
$2.0 \times 10^{-3} \mathrm{~kg}$ oscillating simple harmonically with
angular frequency $0.45 \mathrm{rad} \mathrm{s}^{-1}$ and amplitude
$1.0 \times 10^{-3} \mathrm{~m}$.

- Watch Video Solution

2. If a mass of 2.0 kg is attached to one end of a spring and the spring has a spring constant $1500 \mathrm{Nm}^{-1}$, then calculate the maximum velocity and acceleration of the mass body for an amplitude 0.05 m .

- Watch Video Solution

3. Calculate the period of a simple pendulum of length 0.98 m at a place where acceleration due to
gravity is $9.8 m s^{-2}$.

D Watch Video Solution

4. For a damped oscillation of a particle, show that time taken for the amplitude to drop to half of its $\frac{2 m \ln (2)}{b}$, where b is a damping constant.

- Watch Video Solution

5. Give the expression for frequency of oscillation of a mass body as shown in the fig.

- View Text Solution

6. Calculate the time taken for particele energy to drop to half its initial value in the case of a damped oscillator.

D Watch Video Solution
7. The displacement equation of a particle
executing
S.H.M
is
given
by
$y=0.01 \sin \pi(t+0.005) m . \quad$ Calculate the
maximum velocity and displacement at the time of start of the motion.

D Watch Video Solution

8. The acceleration of a particle executing SHM is $0.10 m s^{-2}$ at a distance of $8 \times 10^{-2} m$ from the mean position. Calculate its time period.

D Watch Video Solution

9. In a simple pendulum, the displacement of the bob is half of the amplitude. Calculate fraction of

PE and KE of the pendulum.

- Watch Video Solution

10. Calculate the time period of a body executing

SHM whose displacement is 0.04 m and 0.05 m and the corresponding velocities are $0.1 \mathrm{~m} / \mathrm{s}$ and $0.08 m s^{-1}$.

D Watch Video Solution

11. If T_{1} and T_{2} are the time of oscillations for two springs of constants k_{1} and k_{2} connected to
the mass m individually then calculate the time period of oscillations when both the spring are connected to the same mass and subjected to oscillations.

Watch Video Solution

12. Two spring of spring constants
$10 \mathrm{Nm}^{-1}$ and $20 \mathrm{Nm}^{-1}$ are connected in series.

One end of the combination is supported rigidly
and the other to a body of mass 2 kg . Neglecting the masses of the springs, calculate the frequency of oscillation of the system.
13. A small pole of density $0.75 \mathrm{~g} / \mathrm{cc}$ and height 5 cm is placed in water such that the pole oscillates along ite length vertically. If the density of water is $1.012 \mathrm{~g} / \mathrm{cc}$, then calculate the period of oscillation of the pole $\left(g=10 m s^{-2}\right)$.

D Watch Video Solution

14. Calculate the period of oscillation of a body falling freely inside the tunnel created along the diameter of the earth. Given average density of
the material of the Earth $5500 \mathrm{kgm}^{-3}$ and universal gravitational constant $6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$.

(D) Watch Video Solution

15. Show that $y=\sin ^{2} \omega t$ does not represent simple harmonic but periodic. What is the period of the given function.

- Watch Video Solution

16. A harmonic osillator is represented by
$y=0.5 \cos (1500 \pi t+0.8)$ where ' y ' and ' t ' are in
'm' and 's' respectively. Calculate (i) amplitude, (ii)
frequency, (iii) angular frequency, (iv) period (v) intial phase or epoch of the particle

- Watch Video Solution

17. A harmonic osillator is represented by
$y=0.5 \cos (1500 \pi t+0.8)$ where ' y ' and ' t ' are in
'm' and 's' respectively. Calculate (ii) frequency
18. A harmonic osillator is represented by $y=0.5 \cos (1500 \pi t+0.8)$ where ' y ' and ' t ' are in ' m ' and 's' respectively. Calculate (iii) angular frequency

D Watch Video Solution

19. A harmonic osillator is represented by $y=0.5 \cos (1500 \pi t+0.8)$ where ' y ' and ' t ' are in ' m ' and 's' respectively. Calculate (iv) period
20. A harmonic osillator is represented by $y=0.5 \cos (1500 \pi t+0.8)$ where ' y ' and ' t ' are in
' m ' and 's' respectively. Calculate intial phase or epoch of the particle

D Watch Video Solution

21. Two simple harmonic motions are represented by
$v_{1}=10 \pi \cos \left(100 \pi t+\frac{\pi}{3}\right)$ and $v_{2}=-0.1 \pi \sin \pi t$,
where v_{1} and v_{2} represent velocities of particles.

Calculate the initial phase of velocity of particle (1) w.r.t. the velocity of particle (2).

- Watch Video Solution

22. A body executes S.H.M under influence of a force with a time period of 1.0 s . It has a time period of 1.5 s under theaction of a force of different magntitude. What will be the period of oscillation of the body when these two force are impressed simultaneously in the same direction upon the same body?
23. A spring balance has a scale that reads from 0 to 50 kg . The length of the scale is 20 cm . A body suspended from this balance, when displaced and released, oscillates with a period of 0.6 s . What is the weight of the body?

D Watch Video Solution

24. A spring having a spring constant $1200 \mathrm{Mn}^{-1}$ is mounted on a horizontal table. A mass of 3 kg is
attached to the free end of the spring. The mass is
then pulled sideways to a distance of 0.02 m and
released. Determine (i) frequency of oscillations
(ii) maximum acceleration of the mass and (iii) the maximum speed of the mass.

- Watch Video Solution

25. Plot the corresponding SHM of particle. Indicate the intial $(t=0)$ position of the particle, the radius of the circle and angular speed of the rotating particle. Consider sense of rotation to be anticlockwise and x in cm and t is in s .
(a) $=-2 \sin \left(3 t+\frac{\pi}{3}\right)$
26. Plot the corresponding SHM of particle. Indicate the intial $(t=0)$ position of the particle, the radius of the circle and angular speed of the rotating particle. Consider sense of rotation to be anticlockwise and x in cm and t is in s .
(b) $x=\cos \left(\frac{\pi}{6}-t\right)$

D Watch Video Solution

27. Plot the corresponding SHM of particle.

Indicate the intial $(t=0)$ position of the particle,
the radius of the circle and angular speed of the
rotating particle. Consider sense of rotation to be anticlockwise and x in cm and t is in s .
(c) $x=3 \sin \left(2 \pi t+\frac{\pi}{4}\right)$

- Watch Video Solution

28. Plot the corresponding SHM of particle. Indicate the intial $(t=0)$ position of the particle, the radius of the circle and angular speed of the rotating particle. Consider sense of rotation to be anticlockwise and x in cm and t is in s .
(d) $x=2 \cos \pi t$
29. Calculate the maximum extension of the spring in the following two cases. Also calculate period of oscillation in each case.
(a)

- Watch Video Solution

30. The acceleration due to gravity on the surface of the Moon is $1.7 \mathrm{~ms}^{-2}$. What is the time period of a simple pendulum on the surface of the Moon,
if its time period on the surface of Earth is 3.5 s ?
(g on the surface of the Earth is $9.8 m s^{-2}$).

D Watch Video Solution

31. A simple pendulum of length 'I' and having a bob of mass M is suspended in a car. The car is moving on a circular track of radius R with a uniform speed v. If the pendulum makes small oscillation in a radial direction about its equilibrium position, then what will be its time period?
32. A cylindrical piece of cork of density ρ, base area A and height h , floats in a liquid of density ρ_{1}.

The cork is depressed slightly and then released.

Show that the cork oscillates up and down simple
harmonically, with a period $T=2 \pi \sqrt{\frac{h \rho}{\rho_{1} g}}$, where
' ρ ' is the density of the cork.

- Watch Video Solution

33. An air champer of volume ' V ' has a neck area of cross - section A into which a ball of mass m just
fits and can move up and down without any friction. Show that when the ball is pressed down a little and released, it executes SHM. Obtain an expression for the time period of oscillation assuming pressure volume variations of air to to be isothermal.

D Watch Video Solution

34. A circular disc of mass 10 kg is suspended by a wire attached to its centre. The wire is twisted by rotating the disc and released. The period of torsional oscillations is found to be 1.5 s . The
radius of the disc is 0.15 m . Determine the torsional
spring constant of the wire. (Note : Torsional
spring constant ' α ' is defined by the relation
$J=-\alpha \theta$ where J is the restoring couple is torque).

D Watch Video Solution

35. A body describes SHM with an amplitude of
0.05 m and a period of 0.2 s . Find the acceleration and velocity of the body when the displacement is
(a) 5 cm (b) 3 cm (c) zero cm .
36. A mass attached to a spring is free to oscillate,
with an angular velocity ω in a horizontal plane
without friction or damping. It is pulled to a
distance x_{0} and pushed towards the centre with a velocity v_{0} at tmet $t=0$. Determine the amplitude of the resulting oscillations in terms of the parameter ω, x_{0}, v_{0} (Hint : Start with the equation $x=a \cos (\omega t+\theta)$ and note that the initial velocity is negative.)

D Watch Video Solution

37. You are riding in an automobile of mass 3000 kg. Assuming that you are examining the oscillation characteristics of its suspension system. The suspension sags 0.15 m when the entire automobile is placed on it. Also, the amplitude of oscillation decreases by 50% during one complete oscillation. Estimate the value of (a) the spring constant k and (b) damping constant'b' for the spring and shock absorber system of one wheel, assuming that each wheel supports 750 kg
$\left(g=10 m s^{-2}\right)$.

D Watch Video Solution

38. Show that for a particle in linear system, the average K.E. over a period of oscillation equals the average potential energy ever the same period.

- Watch Video Solution

39. The period of oscillation of a simple pendulum is 1.45 s . If the density of the material of the bob is
$7.8 \times 10^{3} \mathrm{kgm}^{-3}$ and that of water is
$1.0 \times 10^{3} \mathrm{kgm}^{-3}$, then calculate the period of oscillation of the simple pendulum in water.
40. Calculate the effective spring constant in each
case and hence write the expression for period of oscillation. Ignore the masses of the spring.

41. Show that in simple harmoni motion, the acceleration is directly proportional to its displacement at the given instant.
