©゙ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

PU BOARD MODEL QUESTION PAPER

(WITH ANSWERS)

Exercise Part A

1. Mention the method of determining the mass of planets, stars etc.

- Watch Video Solution

2. What is the minimum number of vectors required to give zero resultants?

D Watch Video Solution

3. What is the value of one kilowatt hour (kWh)

in joules?

- Watch Video Solution

4. Define linear momentum of a system of particles.

- Watch Video Solution

5. State Hooke's law.

- Watch Video Solution

6. Write the equation of continuity for the flow of incompressible fluids.

- Watch Video Solution

7. Give an importance of Reynold's number.

- Watch Video Solution

8. State the principle of calorianetry.

D Watch Video Solution

9. State Zeroth law of thermodynamics.

- Watch Video Solution

10. Define degrees of freedom. Write the number of degrees of freedom for (i) monoatomic gas and (ii) diatomic gas.

- Watch Video Solution

Exercise Part B

1. Name the two Physicists who achieved the unification of electricity and magnetism.

- Watch Video Solution

2. Mention any two uses of dimensional analysis.

Watch Video Solution

3. A player throws a ball vertically upwards.

What is the direction of acceleration during
upward motion? What is the velocity at the highest point of its motion.

- Watch Video Solution

4. Define the terms : unit vector and equal vectors.
5. Mention two methods of reducing friction.

D Watch Video Solution

6. State the principle of moments for a lever.

Give an example of lever.

D Watch Video Solution
7. Define surface tension. Why there is no surface tension in gases ?

- Watch Video Solution

8. What is a periodic motion? Give an example.

D Watch Video Solution

Exercise Part C

1. What is centripetal acceleration? Write the expression for the centripetal acceleration and explain the terms.

- Watch Video Solution

2. Derive $\vec{F}=m \vec{a}$ where the symbols have their usual meanings.

- Watch Video Solution

3. Prove that change in kinetic energy of a paticle is equal to the work done on it by a variable force.

D Watch Video Solution

4. State and explain parallel axis theorem and perpendicular axis theorem.

D Watch Video Solution

5. Arrive at the expression for escape speed of the body from the surface of earth.

D Watch Video Solution

6. Draw Stress - Strain curve. Show Yield point and Fracture point.
7. Mention three factors on which flow by conduction in a bar depends.

D Watch Video Solution
8. Derive an ideal gas equation by using gas
laws.
(Watch Video Solution

1. What is v-t graph? Derive the expression $x=V_{0} t+1 / 2 a t^{2}$ using v-t graph.

- Watch Video Solution

2. Derive an expression for potential energy of a spring and show that spring force is a conservation force.
3. What is centre of mass of a body ? Obtain an expression for the positive vector of a centre of mass of two particle system.

- Watch Video Solution

4. Define latent heat of fusion and latent of
vapourisation. Explain the variation of temperature with heat (energy) for water at one atmosphere with a graph.

5. What are beats? Give the theory of beats.

D Watch Video Solution

6. What is a heat engine? Explain its working with schematic diagram.

D Watch Video Solution
7. A cricket ball is thrown at a speed of $56 m s^{-1}$ in a direction, making an angle 30° with the horizontal, Calculate.
(a) Maximum height,

D Watch Video Solution

8. A cricket ball is thrown at a speed of $56 \mathrm{~ms}^{-1}$ in a direction, making an angle 30° with the horizontal, Calculate.
(b) total time taken by the ball to return to the earth

D Watch Video Solution

9. A cricket ball is thrown at a speed of $56 m s^{-1}$ in a direction, making an angle 30° with the horizontal, Calculate.
the distance from thrower to the point where the ball returns to the earth.

D Watch Video Solution

10. A well 20 m deep and 7 m in diameter is full
of water. Calculate the work done in pumping the whole of water up to ground level.

D Watch Video Solution

11. If the mass of the earth is 100 times that of
the moon and its diameter 5 times that of moon, compare the weight of a body on the surface of the moon with its weight on the surface of the earth.
12. A cubical ice box of thermocol has each side 30 cm and thickness $5 \mathrm{~cm}, 4 \mathrm{~kg}$ of ice is put in the box, if outside temperature is $45^{\circ} \mathrm{C}$ and coefficient of thermal conductivity is $0.01 \mathrm{Js}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$. Calculate the mass of ice left after 6 hrs. Take latent heat of fusion of ice as $335 \times 10^{3} \mathrm{JK}^{-1}$

D Watch Video Solution

13. A train standing a the outer signal of a railway station blows a whistle of frequency 400 Hz in still air .

What is the frequency of the whistle for a
platform observer when the train
(i) approaches the platform with a speed of $10 \mathrm{~ms}^{-1}$?
(ii) recedes from the platform with a speed of $10 m s^{-1} ?$
14. A train standing a the outer signal of a railway station blows a whistle of frequency 400 Hz in still air . when the train
(i) approaches the platform with a speed of $10 \mathrm{~ms}^{-1}$?
(ii) recedes from the platform with a speed of $10 \mathrm{~ms}^{-1}$?

What is the speed of sound in each case? The speed of sound in still air can be taken as $340 m s^{-1}$

