©゙doubtnut

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA

ENGLISH)

SUPER MODEL QUESTION PAPER 1

Question Paper 1 For Practice Part A

1. Give any two examples for a dimensional constant.

-
 Watch Video Solution

2. State lami's theorem.
3. What is meant by a conservative force?

- Watch Video Solution

4. What is meant by axis of rotation?

D Watch Video Solution

5. What is elastic limit?

- Watch Video Solution

6. How does liquid pressure depend on the depth of a point below the surface of a liquid
7. How does surface tension of liquid vary with temperature?

- Watch Video Solution

8. What is meant by regelation?

- Watch Video Solution

9. Represent an isobaric process graphically.

- Watch Video Solution

10. How many degrees of freedom are there in there in the translatory motion of atoms?

Question Paper 1 For Practice Part B

1. Name any two symmetries which help in unifying the forces of nature.

- Watch Video Solution

2. A physical quantity ' Q ' is given by $\mathrm{Q}=\frac{A^{2} B^{3 / 2}}{C^{4} D^{1 / 2}}$. The percentage error in A, B, C, D, E are $1 \%, 2 \%, 4 \%, 2 \%$ respectively. Calculate the minimum and maximum percentage errors in ' Q '

D Watch Video Solution

3. Define relative velocity of one body with respect to another.
4. Show that $a=r \omega$.

- Watch Video Solution

5. Give any two examples of reducing the impulse.

- Watch Video Solution

6. When are the moments of a force, minimum and maximum on a body?
7. Give an expression for the terminal speed of a small spherical object in a homogenous surrounding fluid.

D Watch Video Solution

8. Represent KE and PE of a particle executing SHM graphically.

- Watch Video Solution

Question Paper 1 For Practice Part C

1. Define average velocity of a particle. Represent the same in vector form.
2. State and explain Newton's first law of motion.

D Watch Video Solution

3. Obtain an expression for common velocity and loss in the kinetic energy for a moving body m_{1} colliding against another at rest.

- Watch Video Solution

4. State the conditions of equilibrium of a system of coplanar forces.

- Watch Video Solution

5. State and explain Newton's law of gravitation.
6. A wire 4 m long and 0.3 mm in diameter is stretched by a force of 100 N . If extension in the wire is 0.3 mm , then calculate the potential energy stored in the wire.

D Watch Video Solution

7. Show that $\alpha=\frac{\beta}{2}$ where symbols have their usual meaning.

- Watch Video Solution

8. Estimate the size of diamond molecule given its atomic mass
12.01u and density $2.22 \times 10^{3} \mathrm{kgm}^{-3}$.

Question Paper 1 For Practice Part D

1. Show that $x=u t+\frac{1}{2} a t^{2}$ graphically, where symbols have their usual meaning

D Watch Video Solution

2. Obtain an expression for common velocity and loss in the kinetic energy for a moving body m_{1} colliding against another at rest.

- Watch Video Solution

3. State and explain the theorem of parallel axis with an example
4. Derive Mayer's equation from the I law of thermodynamics.

- Watch Video Solution

5. Show that only odd harmonics are present in the closed pipe system.

- Watch Video Solution

6. A cyclist is riding with a speed of $27 \mathrm{~km} / \mathrm{h}$. As he approaches a circular turn on the road of radius 80 m , he applies brakes and reduces his speed at the constant rate of $0.50 \mathrm{~m} / \mathrm{s}^{-2}$ every second
.What is the magnitude and direction of the net acceleration of the cyclist on the circular turn ?
7. A 10 kg block $\left(M_{1}\right)$ is on a smooth horizontal table. The block is connected to a second block of mass $4 \mathrm{~kg}\left(M_{2}\right)$ by a massless flexible taut chord that passes over a frictionless pulley. The 4 kg block is 0.5 m above the floor. The two blocks are released from rest. With what speed does the 4 kg block hit the ground?

- Watch Video Solution

8. In a sub - stage lunch of a satellite, the first stage brings the satellite to a height of 150 km and the second stage gives it the necessary critical speed to put. It in a circular orbit around the Earth , which stage requires more expenditure of fuel ?

(Given

$$
\left.M_{E}=6.0 \times 10^{24} \mathrm{~kg}, R=6.4 \times 10^{6} \mathrm{~m}, G-6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right) .
$$

- Watch Video Solution

9. Initial ice layer on a pond is 10 mm . What time will it take to form an addition of 5 mm on it? Given K of ice $=1.6 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$, temperature $=-10^{\circ} \mathrm{C}$ and density of water $=10^{3} \mathrm{kgm}^{-3}$

D Watch Video Solution

10. A train standing a the outer signal of a railway station blows a whistle of frequency 400 Hz in still air .

What is the frequency of the whistle for a platform observer when the train
(i) approaches the platform with a speed of $10 \mathrm{~ms}^{-1}$?
(ii) recedes from the platform with a speed of $10 \mathrm{~ms}^{-1}$?

D Watch Video Solution

Question Paper 2 For Practice Part A

1. What is a dimensional formula ? Give an example for a physical quantity.

- Watch Video Solution

