©゙" doubtnut

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS

(KANNADA ENGLISH)

SYSTEMS OF PARTICLES AND ROTATIONAL
 MOTION

One Mark Question And Answers

1. What is a rigid body?
2. What is meant by translatory motion ?

D Watch Video Solution

3. What is meant by rotatory motion ?

- Watch Video Solution

4. What is meant by axis of rotation ?
5. What is precession related to rotatory motion of bodies?

- Watch Video Solution

6. Give an example for bodies describing both translatory and rotatory motion.

- Watch Video Solution

7. Give the expression for the centre of mass of a system of particles along any one axis.

D Watch Video Solution

8. If \vec{R} is the position vector of the centre of mass, then express the same in terms of product 'mr' of all the particles and mass M of the rigid body.

- Watch Video Solution

9. If the centre of mass lies at the origin of the frame of refrence then what is the magnitude of position vector of the centre of mass of the system
10. Express the position vector of centre of mass of a right body for a continuous distribution of mass particles.

- Watch Video Solution

11. Say whether centre of mass necessarily coincide with the geometric centre of a triangle or not.
12. How does centre of mass of a system of particles move?

- Watch Video Solution

13. Say whether internal forces exerted by the particles on one another contribute anything to be motion of the centre of amss or not.
14. What will be the total linear momentum of a system of particles in a rotatory motion?

- Watch Video Solution

15. Under what condition will the total linear momentum of a system be zero?

- Watch Video Solution

16. What will be the velocity of the centre of mass, when the total external force on the system is zero

- Watch Video Solution

17. Define cross-product of two vectors.

- Watch Video Solution

18. Why is $\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0$?

- Watch Video Solution

19. Represent cross product of two vectors in determinant form.

- Watch Video Solution

20. Define angular momentum of a rigid body.

- Watch Video Solution

21. What is the direction of angular velocity of a rotating body ?
22. Write relation between angular velocity and linear velocity,

- Watch Video Solution

23. Define angular velocity.

- Watch Video Solution

24. Define angular acceleration.

25. Define moment of force or torque.

- Watch Video Solution

26. State the law of conservation of angular momentum.

- Watch Video Solution

27. Define couple
28. How is the moment of couple measused ?

- Watch Video Solution

29. State the principle of moments.

- Watch Video Solution

30. What will be the moment of force taken about a
point and actng on the axis of rotation ?

D Watch Video Solution
31. What is a load arm ?

D Watch Video Solution

32. What is an effort arm ?

- Watch Video Solution

33. Define mechanical advantage (M.A) of a simple machine or state the principle of lever.
34. Define the centre of gravity (C.G) of a body.

- Watch Video Solution

35. What is the analogue of mass in rotational motion?

D Watch Video Solution
36. Mention the S.I unit of moment of inertia.

- Watch Video Solution

37. State whether moment of inertia is a scalar or a vector physical quantity

- Watch Video Solution

38. Define the term radius of gyration.

- Watch Video Solution

39. What is a flywheel ?
40. Give any one advantage of using a flywheel in a huge automobile.

- Watch Video Solution

41. State and explain parallel axis theorem and perpendicular axis theorem.

- Watch Video Solution

42. State the theorem of parallel axis.
43. Give the expression for the kinetic energy of a rotating body.

- Watch Video Solution

44. Give the expression for the angular
displacement in terms of angular acceleration and time taken.
45. Express angular acceleration of a body in terms of angular speed and angular displacement

- Watch Video Solution

46. Represent angular acceleration in terms of angular speed and time taken.

- Watch Video Solution

47. Relate torque with angular acceleration
48. What is required to overcome the moment of inertia of a body?

- Watch Video Solution

49. Write the expression for work done by a force in a rotational motion of a body.

- Watch Video Solution

50. Give the expression for the intantaneous power in the case of a rotating body.

- Watch Video Solution

51. State the law of conservation of angular momentum.

- Watch Video Solution

52. Give the general expression for the K.E of a rolling body.

D Watch Video Solution

53. Write the expression for the final linear speed of centre of mass of rolling body on an inclined plane.

- Watch Video Solution

54. What is the radius of gyration for (a) circular ring and (b) circular disc about an axis passing through the centre and perpendicular to their planes ?
55. What the is radius of gyration of a (a) hollow sphere and (b) solid sphere about an axis passing through the centre along any diameter ?

- Watch Video Solution

56. What is the radius of gyration for a (a) hollow cylinder (b) solid cylinder about an axis passing along the length (axis of cylinder) ?
57. What is the radius of gyration for a thin about an axis perpendicular to the length and axis passing through the midpoint of the rod?

D Watch Video Solution

58. Define centre of mass of a body. Give the location of centre of mass of a sphere.
59. Does the centre of mass of a body necessarily be inside the body?

- Watch Video Solution

60. What is a rolling motion ?

D Watch Video Solution
61. What are parallel forces?
62. What are like parallel forces?

- Watch Video Solution

63. What are unlike parallel forces ?

- Watch Video Solution

64. How is torque or moment of force measured ?
65. Write the dimensional formula for Force

- Watch Video Solution

66. Can a single force balance a couple ?

- Watch Video Solution

67. When are the moments of a force, minimum and maximum on a body ?
68. Give the sign conventions for moment of force.

- Watch Video Solution

69. What is the effect of a couple acting on a body
?

- Watch Video Solution

70. State the law of moment.

- Watch Video Solution

71. Mention the SIU of moment of force.

- Watch Video Solution

72. Give an example for a couple.

D Watch Video Solution

73. Define Moment of Inertia.
74. Give the expression for the velocity of a sliding body on an inclined plane.

- Watch Video Solution

2. Give the expression for the centre of mass of a system of particles along any one axis.
3. Explain the physical significance of the equation $M \vec{A}=\vec{F}_{e x t}$, where ' M ' is the mass of the whole rotating body and \vec{A} is the acceleration of the centre of mass of the system of particles.

- Watch Video Solution

4.

$A=\left(x_{1}, y_{1}, z_{1}\right), B=\sim\left(x_{2}, y_{2}, z_{3}\right), C=\sim\left(x_{3}, y_{3}, z_{3}\right)$
represent coordinates of the three vertices of a
triangular lamina then find the centre of mass of the lamina.
5. Represent cross product of two vectors pictorially.

D Watch Video Solution

6. Indicate \vec{r}, \vec{F} and $\vec{\tau}$ in a diagram, where symbols have their usual meanings.
7. What are the factors on which the moment of a couple depend ?

- Watch Video Solution

8. Mention the SI unit of torque. Though dimensional formula of work and torque is the
same, joule is not used to measure torque. Explain why?

- Watch Video Solution

9. Express the condition for external torque on a body for a constant angular momentum.

- Watch Video Solution

10. What will be the angular acceleration of a rotating body, in the absence of any external torque?

- Watch Video Solution

11. Define angular momentum of a rigid body.

Watch Video Solution

Three Marks Question With Answers

1. If the coordinates of three mass points are in the
x , y plane, then express the centre of mass with respect to the origin.

- Watch Video Solution

2. If the position vector of the $i^{\text {th }}$ particle is
$x_{1}=x_{i}+y_{i} \hat{j}+z \hat{k}$, then represent the centre of mass of such a system.
3. Give an expression for the velocity and acceleration of the centre of mass of a system of particles.

- Watch Video Solution

4. Give the expression for the angular velocity of a body in terms of radius and velocity vectors. Represent the direction of angular velocity with the help of a neat labelled diagram.
5. Give the expression of torque in terms of radius and force vectors. Represent moment of Force/torque acting on a body with a neat labelled diagram.

- Watch Video Solution

6. Starting from the definition of angular
momentum in terms of position vector and linear
momentum vectors. S.T. the time derivative of
angular momentum is equal to the torque acting on the particle.

- Watch Video Solution

7. S.T. the time rate of the total angular momentum of a system of particles about a point is equal to the sum of the external torques acting on the system taken about the same point.

- Watch Video Solution

8. Write the general conditions for equilibrium of a rigid body .

- Watch Video Solution

9. S.T the moment of a couple does not depend on the point about which the body rotates.

- Watch Video Solution

10. State the principle of moments.

11. Define moment of inertia and hence Obtain an

 expression for rotational kinetic energy.
- Watch Video Solution

12. Explain the law of conservation of angular momentum in the case of
ballet dancer

- Watch Video Solution

13. Explain the law of conservation of angular momentum in the case of acrobat performing somersault.

- Watch Video Solution

14. What are the properties of a couple acting on a body?

- Watch Video Solution

15. State and explain the law of moments.

- Watch Video Solution

16. State the conditions of equilibrium of a system of coplanar forces.

- Watch Video Solution

17. How is the resultant of two like parallel forces

obtained, using the theorem of moments ?

- Watch Video Solution

1. State and explain the theorem of parallel axis with an example

- Watch Video Solution

2. State and explain the theorem of perpendicular axis with an example.

- Watch Video Solution

3. Obtain and expression for the work done by a torque.
4. What is the moment of a couple ? State any three characteristics of a couple . Give any one illustration for a couple.

D Watch Video Solution
5. (i) Show that (a) $\omega=\omega_{0}+\propto t$
6. $\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \propto t^{2}$ from the first principles of differentiation.

D View Text Solution

Numerical With Solutions

1. A non-uniform bar of weight ' w ' is suspended at rest by two strings of negligible weight. The angles made by the strings with the vertical are 36.9° and
$53.1^{\circ} \mathrm{C}$ respectively. The bar is 2 m long. Calculate
the distance ' d ' of the centre of gravity of the bar
from its left. (refer fig).-NCERT

- Watch Video Solution

2. A solid sphere of mass 2 kg is rolling down an inclined plane of angle of inclination 30°. What is the agent which supplies the external torque for the rotational motion of the sphere ? Calculate torque if radius is $0.40 \mathrm{~m}\left(g=10 \mathrm{~ms}^{-2}\right.$

D View Text Solution

3. If the Earth were to suddenly contact to half its present radius, by how much would the day time decrease?

- Watch Video Solution

4. If a force of $\vec{F}=-3 \vec{i}+\vec{j}+5 \vec{k}$ acts at a point $\vec{r}=7 \vec{i}+3 \vec{j}+\vec{k}$, then calculate the torque produced by the force.
5. The maximum and minimum distance of a comet from the sun are $1.4 \times 10^{12} \mathrm{~m}$ and $7 \times 10^{10} \mathrm{~m}$. If its velocity nearest to the sun is $6 \times 10^{4} \mathrm{~ms}^{-1}$, then what is the velocity at the farthest position ? Assume the path of the comet as circular.

- Watch Video Solution

6. Calculate the angular speed of rotation of the Earth
7. Calculate the angular speeds of the second, minute and hour hands of a 12 hour dial clock.

- Watch Video Solution

8. Four spheres each of diameter 0.02 m and 0.10 kg
are placed with their centres on the vertices of a square of side 0.05 m . Calculate the moment of inertia of the system about one side of the taken as the axis of rotation.
9. A flywheel initially rotating at 120 rpm retards and its angular speed reduces to 10 rpm . If the retardation in uniform and time taken is 1.5 s , then
calculate the numberr of rotations made before coming to a soap.

- Watch Video Solution

10. A uniform solid rod of mass 40 kg and length

10m rests against a vertical smooth wall making an
angle of 30° with the vertical. Find the force of
friction (f) and normal reaction (R) exerted by the groundd on the rod.

- Watch Video Solution

11. An oxygen molecule has a mass of 5.30×10^{-26}
kg and a moment of inertia of $1.94 \times 10^{-46} \mathrm{kgm}^{2}$ about an axis through its centre perpendicular to the lines joining the two atoms. Suppose the mean speed of such a molecule in a gas is $500 \mathrm{~ms}^{-1}$ and that its kinetic energy of rotation is two thirds of its kinetic energy of translation Find the average angular velocity of the molecule.

- Watch Video Solution

12. A solid cylinder rolls up an inclined plane of angle of inclination 30°. At the bottom of the inclined plane the centre of mass of the cylinder has a speed of $5 m s^{-1}$

How far will the cylinder go up the plane?

- Watch Video Solution

13. A solid cylinder rolls up an inclined plane of angle of inclination 30°. At the bottom of the inclined plane the centre of mass of the cylinder has a speed of $5 \mathrm{~ms}^{-1}$

How long will it take to return to the bottom?
14. A solid rolls down two different inclined planes
of the same heights but different angle of inclination.

Will it reach the bottoms with the same speed in each case?

- Watch Video Solution

15. A solid rolls down two different inclined planes
of the same heights but different angle of inclination.

Will it take longer to roll down one plane than the other?

- Watch Video Solution

16. A solid rolls down two different inclined planes
of the same heights but different angle of inclination.

If so, which one and why ?
17. A rope of negligible mass is wound round a hollow cylinder of mass 5 kg and radius 0.40 m .

What is the linear acceleration of the cylinder if the rope is pulled with a force of 30 N ?

- Watch Video Solution

18. A car weighs 1800 kg . The distance between its
front and back axles is 1.8 m . Its centre of gravity is
1.05 m behind the front axle. Determine the force
exerted by the level ground on each front wheel and back wheel.
19. A metre stick is balanced on knife edge at its
centre . When two coins, each of mass 5 g are put one on top of the other at the 12.0 cm mark, the stick is found to be balanced at 45.0 cm . What is the mass of the metre stick ?

- Watch Video Solution

20. In the HCl molecule, the separation between
the nuclei of the two atoms is about 1.27A. Find the approximate location of the centre of mass of the
molecule, given that the chlorine atom is about
35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is concentrated in its nucleus.

D Watch Video Solution

21. A man stands on a rotating platform with his
arms outstretched horizontally holding a 5 kg
weight in each hand. The angular speed of the
platform is 30rpm. The man then brings his arms
back to his body with the distance of each weight
from the axis changing from 0.90 m to 0.20 m . The
moment of inertia of the man together with the
platform may be taken to be constant and equal to
$7.6 \mathrm{kgm}^{2}$
What is his new angular speed ?

- Watch Video Solution

22. A man stands on a rotating platform with his
arms outstretched horizontally holding a 5 kg
weight in each hand. The angular speed of the
platform is 30rpm. The man then brings his arms
back to his body with the distance of each weight
from the axis changing from 0.90 m to 0.20 m . The
moment of inertia of the man together with the
platform may be taken to be constant and equal to
$7.6 \mathrm{kgm}^{2}$
Is K.E conserved in the process ? If not, from where does the change come about ?

- Watch Video Solution

23. A bullet of mass 10 g and speed $500 \mathrm{~ms}^{-1}$ is
fired into a door and gets embedded exactly at the
centre of the door. The door is 1.0 m wide and
weighs 12 kg . It is hinged at one end and rotates about a vertical axis practically without friction.

Find the angular speed of the door just after the bullet embeds into it

- Watch Video Solution

24. A cylinder of mass 10 kg and radius 0.15 m is rolling perfectly on a plane of inclination 30°. The coefficient of static friction $\mu_{s}=0.25$

How much is the force of friction acting on the cylinder?
25. A cylinder of mass 10 kg and radius 0.15 m is rolling perfectly on a plane of inclination 30°. The coefficient of static friction $\mu_{s}=0.25$

What is the work done against friction during rolling ?

- Watch Video Solution

26. A cylinder of mass 10 kg and radius 0.15 m is
rolling perfectly on a plane of inclination 30°. The
coefficient of static friction $\mu_{s}=0.25$
If the inclination θ of the plane is increased, at
what value of θ does the cylinder begin to skid and not roll perfectly.

- Watch Video Solution

27. A solid disc and a string, both of radius 0.10 m are placed on a horizontal table simultaneously, with the initial angular speed equal to $10 \pi r a d^{-1}$.

Which of the two will start to roll earlier ? The coefficient of kinetic friction is $\mu_{k}=0.2$

- Watch Video Solution

28. S.T. $v^{2}=\frac{2 g h}{1+\frac{K^{2}}{R^{2}}}$ for the rolling object on an
inclined plane of height (h) using dynamical
Consideration.

- Watch Video Solution

29. Two boys weighting 25 kg and 35 kg sit on either end of a light pole. Find the point about which the pole remains horizontal if the pole is 6 m long. (march-2006 North)
30. Two boys weighing 30 kg and 50 kg are sitting on either side of the fulcrum of a see saw at distance $2 m$ and $3 m$ respectively. Where should a man of 60kg must sit to balance the see-saw ?

- Watch Video Solution

31. A unifrom pole of mass 20 kg and length 6 m is supported horizontally at its ends by two knife edges A and B. A mass of 120 kg is now suspended at a distance 2 m from A . Calculate reaction forces at the knife edges.
32. A ladder weighing 20 kg wt rests with its one end against a smooth vertically wall and the other end against the smooth floor. If the inclination of the ladder to the horizontal is 60° then calculate the horizonatl force required at the lower end so that is does not slip.

D View Text Solution

33. A uniform plank of length 4 m and weighing

50kg is supported at two knife edges each at 1 m
from the ends of the plank. How close to the end of the plank can a man weighing 70kg walk before it tips.

- Watch Video Solution

34. Find the torque about the point ' A ' in the following diagram

- View Text Solution

