びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS

PHYSICS (KANNADA ENGLISH)

THERMAL PROPERTIES OF MATTER

One Mark Questions And Answers

1. What is heat?

2. What is meant by temperature?

D Watch Video Solution

3. What determines the flow of heat in a medium?
(D) Watch Video Solution
4. How does quantity of heat in a body depend on its mass?

D Watch Video Solution
5. Name the device used to measure the temperature of a body.

D Watch Video Solution
6. What is ice point in a thermometer?

- Watch Video Solution

7. What is the steam point in a thermometer?

- Watch Video Solution

8. Give the formula to convert Fahrenheit temperature into Celsius scale of temperature.

- Watch Video Solution

9. Give the relation connecting absolute scale (Kelvin scale) of temperature and Celsius scale of temperature.

D Watch Video Solution

10. epresent the relation between ' C ' and ' F ' scales of temperature graphically.

D Watch Video Solution

11. Represent the relationship between Kelvin scale of temperature and Celsius scale of temperature graphically

- Watch Video Solution

12. What is an ideal gas?

- Watch Video Solution

13. Name any one physical quantity that describes the thermal behaviour of a gas.

D Watch Video Solution
14. Give the mathematical form of Boyle's law.

- Watch Video Solution

15. Give the mathematical form of Charles' Jaw.
16. Give the mathematical form of combined gas law.

- Watch Video Solution

17. Write the value of the universal gas

constant.

- Watch Video Solution

18. Define absolute zero of temperature.

D Watch Video Solution

19. State Boyle's law.

D Watch Video Solution
20. State Charles' law.

- Watch Video Solution

21. State Gay Lussac's law.

D Watch Video Solution

22. At what temperature does extrapolation of

P-T curve of all ideal gases at low density meet

- Watch Video Solution

23. What is the least possible temperature on

Fahrenheit scale of temperature?

D Watch Video Solution
24. What is meant by thermal expansion?

D Watch Video Solution

25. Define coefficient of linear expansion of solids

- Watch Video Solution

26. Define coefficient of superficial (aerial) expansion of solids.

- Watch Video Solution

27. Define coefficient of volume expansion of solids.
28. Define coefficient of linear expansion of solids

(Watch Video Solution

29. Define coefficient of superficial (aerial) expansion of solids.

- Watch Video Solution

30. Define coefficient of volume expansion of solids.

D Watch Video Solution
31. Give the relation among \propto, β and γ

- Watch Video Solution

32. Give the relation aroone
33. Express thermal stress in terms of coefficient of linear expansion.
(Watch Video Solution
34. Define specific heat of a substance

- Watch Video Solution

35. Write the SI unit of specific heat of a substance.

D Watch Video Solution
36. Define heat capacity .

D Watch Video Solution

37. Mention the SI unit of thermal capacity of a
substance.

- Watch Video Solution

38. Define molar specific heat or a substance.
(Watch Video Solution
39. Write the SI unit of molar specific beat of a substance.

- Watch Video Solution

40. Write the SI unit of molar specific beat of a substance.

D Watch Video Solution
41. Explain molar specific heat of a gas at constant (i) pressure and (ii) volume. Write the relation between them in terms of gas constant.
42. Write any one practical significance of the large value of specific heat of water

- Watch Video Solution

43. Name the device to measure heat.

D Watch Video Solution
44. State the principle of calorianetry.

45. What is melting?

- Watch Video Solution

46. What is the melting point of a substance?

D Watch Video Solution

47. What is the boiling point of a substance?

48. What is meant by regelation?

(Watch Video Solution

49. What is meant by vapourisation?

- Watch Video Solution

50. What is meant by sublimation?
51. Define latent heats of fusion and vapourisation of a substance.

- Watch Video Solution

52. What does it mean to say that latent heat of ice equals $3.36 \times 10^{5} \mathrm{Jkg}^{-1}$?

D Watch Video Solution

53. What is meant by heat conduction?

- Watch Video Solution

54. When is steady state said to be attained by a conductor?

D Watch Video Solution

55. Define coefficient of thermal conductivity.

56. Mention the SI unit of thermal conductivity

- Watch Video Solution

57. Write the dimensional formula for thermal conductivity.
58. Write the expression for thermal resistance of a conductor

D Watch Video Solution

59. Two conductor one of silver with
$K=406 W^{-1} K^{-1}$ and the other of copper
with $\mathrm{K}=385 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ are selected. Which
is a better conductor of heat?

D Watch Video Solution

60. Which is a poorer conductor of heat between ice ($\mathrm{K}=1.6$) and water (0.8) ?`

- Watch Video Solution

61. Two conductors the of same lengths and areas of cross-section are connected in series.

Give the expression for common (junction) temperature.
62. Two conductors of identical dimensions of length and area of cross section are connected in series. What will be their equivalent thermal conductivity?

D Watch Video Solution

63. Two conductors of identical dimensions of
length and area of cross-section are connected in parallel. What will be their equivalent thermal conductivity?
64. Give the expression for the amount of heat conducted in a steady state.

- Watch Video Solution

65. Define temperature gradient in a conductor.

D Watch Video Solution
66. What is meant by heat convection?

D Watch Video Solution

67. Give a few consequences of convection of
heat.

D Watch Video Solution

68. What does radiation of heat mean?
69. What is the speed of radiant heat?

D Watch Video Solution
70. State Newton's law of cooling.

D Watch Video Solution

71. Give the mathematical form for Newton's
law of cooling

- Watch Video Solution

72. Represent Newton's law of cooling graphically.

- Watch Video Solution

73. Give the formula to calculate the time of cooling of a body through a particular range of temperature.
74. Write any three properties of thermal radiation.

D Watch Video Solution

Two Marks Question And Answers

1. Write Vander-Waal equation arid explain the symbols used.
2. Cutting of ice by a taut thread is more feasible than with a taut metal string. Explain

D View Text Solution

3. Mention any two substances which sublime.
(Watch Video Solution
4. Define thermal conductivity. Write its SI unit.
5. Why is the bottom of cooking vessel made of steel, coated with copper?

- Watch Video Solution

6. The walls of buildings facing east or west are usually built with hollow bricks. Explnin

Why.
7. Explain briefly convection air currents setting up a sea breeze.

D Watch Video Solution

8. Explain land breeze.

- Watch Video Solution

9. What are trade winds? Explain.

D Watch Video Solution
10. What are black bodies?

- Watch Video Solution

11. The bottom of the cooking vessel is usually roughened or blackened. Explain why.
12. Solar water heaters use cadmium black as a coating material on copper water pipes.

Explain why

D Watch Video Solution

13. Distinguish between specific bent and
thermal conductivity or a substance.

D Watch Video Solution
14. The bottom of the skis/skates is sharp.

Explain why.

D Watch Video Solution
15. Explain the term triple point of the substance.

- Watch Video Solution

16. What is a phase diagram? Draw a phase diagram with regard to water.

D Watch Video Solution
17. Explain why,
a body with large reflectivity is a poor emitter.

- Watch Video Solution

18. Explain why,

a brass tumbler feels much colder than a wooden tray on a chilly day

D Watch Video Solution

19. Explain why,
an optical pyrometer calibrated for an ideal
black body radiation gives a very low value for
the temperature of a red hot iron piece in the
open, but gives a correct value for the
temperature when the same piece is in the furnace

D Watch Video Solution
20. Explain why,
the Earth without its atmosphere would be
inhospitably cold.

- Watch Video Solution

21. Explain why,
heating systems based on circulation of steam
are more efficient in warming a building than
those based on circulation of hot water

D Watch Video Solution

Three Marks Questions And Answers

1. Explain anomalous expansion of water
2. Explain how marine animals can survive under ice on a frozen sea.

D Watch Video Solution

3. State and explain Boyle's law.

- Watch Video Solution

4. State and explain Charles' law

Watch Video Solution

5. Show that the average kinetic energy of a gas moJecrule is directly proportional to the temperature of the gas.

D Watch Video Solution

6. State and explain the laws of thermal conductivity and hence mention the SI unit of coefficient of thermal conductivity.
7. Distinguish between the spetific heat capacity and the molar specific heat capacity of a substance

- Watch Video Solution

8. Explain the variation of temperature with heat for water at 1 atm with a graph.
9. Show that $\beta=2 \propto$ where symbols have their usual meaning.

- Watch Video Solution

10. Show that $\gamma=3 \propto$ where symbols have
their usual meaning.

- Watch Video Solution

11. Show that the volume coefficient of on ideal
gas at constant pressure equals T^{-1} where T
is the absolute temperature

- Watch Video Solution

12. Deduce combined gas law

D Watch Video Solution

1. Show that $\mathrm{R}=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

- Watch Video Solution

2. If the coefficient of linear expansion of iron
is $1.20 \times 10^{-5} K^{-1}$ and diameters of the
wooden and the iron rings are $1.472 m$ and
$1.398 m$, then calculate the temperature to which the iron ring has to be heated from 27°
C, so that the iron ring fits over the wooden ring.
3. Given that molar specific heats of gas at' constant pressure and volume as 20.8 J $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$ and $12.5 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$.Calculate their dirference and the ratio of specific heats of the gas.

- Watch Video Solution

4. Two metal rods made up of iron
$\left(K_{1}=79 \mathrm{Wm}^{-1} K^{-1}\right) \quad$ and \quad brass
$\left(K_{2}=109 \mathrm{Wm}^{-1} K^{-1}\right)$ are of identical shape and size. These are fused at the junction. If the temperature at the free end of iron is at a steam point and brass at ice point then calculate the temperature at the junction, when the steady state is attained.

D Watch Video Solution

5. The thickness of a brick wall is 0.25 m . The temperatures inside and outside or $24^{\circ} \mathrm{C}$ and 42° C. Given Thermal conductivity of brick $=$
$0.15 W^{-1} K^{-1}$, then calculate the total amount of heat conducted in a time interval of 30 minutes due to a $25 \mathrm{~m}^{2}$ wall.

D Watch Video Solution

6. Find the amount of heat required to convert

10 kg ice at $-10^{\circ} \mathrm{C}$ to water at $50^{\circ} \mathrm{C}$. Given specific heat of ice $2100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$, specific heat of water $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and latent heat of ice $3.36 \times 10^{5} \mathrm{Jkg}^{-1}$
7. A body cools from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 5 minutes. Calculate the time it takes to cool from $60^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. The temperature of the surroundings is $20^{\circ} \mathrm{C}$

D Watch Video Solution

8. A cubical ice box of thermocol has each side

30 cm and thickness $5 \mathrm{~cm}, 4 \mathrm{~kg}$ of ice is put in
the box, if outside temperature is $45^{\circ} \mathrm{C}$ and coefficient of thermal conductivity is
$0.01 \mathrm{Js}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$. Calculate the mass of ice left after 6 hrs. Take latent heat of fusion of ice as $335 \times 10^{3} \mathrm{JK}^{-1}$

D Watch Video Solution

9. A brass boiler has a base area of $0.15 m^{2}$ and
thickness 1 cm . It boils water at the rate of 6 kg per minute when placed on a gas stove.

Estimate the temperature of the part of the
flame in contact with the boiler. Thermal conductivity of brass is $=109 \mathrm{Js}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$,

Heat of vapourisation of water is $2256 \times 10^{3} \mathrm{Jkg}^{-1}$

D Watch Video Solution

10. Estimate the temperature on the surface of the Sun from the following data.

Average distance of the orbit $=1.5 \times 10^{8} \mathrm{~km}$
Average radius of the sun $=7.0 \times 10^{5} \mathrm{~km}$
solar constant $=1400 \mathrm{Wm}^{-2}$

D Watch Video Solution
11. A body cools from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 5 minutes. Calculate the time it takes to cool from $60^{\circ} C$ to $30^{\circ} C$. The temperature of the surroundings is $20^{\circ} \mathrm{C}$

- Watch Video Solution

12. Sun emits maximum radiant energy at 5461A and Moon at $10 \mu \mathrm{~m}$. If the surface temperature of Sun is 5890 K , then find that of the Moon.
13. Luminosity of a distant star is 16000 times
that of the Sun. If the surface temperature of
the Sun is 5890 K , then find the surface temperature of the star.

D Watch Video Solution

14. The thickness of a filament wire is 0.15 mm
and length 10 cm . The filament ts heated to
incandescence at 2000K. Calculate the energy
radiated per second. If the power rating of the bulb is 40W, then calculate the relative emittance or surface emissivity.

D Watch Video Solution

15. A small cavity of diameter 2 mm whose tempe_rature is 3000 K acts as a black body.
calculate the intensity of radiation emitted by it. If the temperature of the surroundings is JOOK, then calculate the rate of radiant heat emitted to the surroundings.
16. Two vessels of different materials are identical in size and wall thickness. They are
filled with equal quantities of ice at $0^{\circ} \mathrm{C}$. The ratio of their thermal conductivities is $5: 2$. If it takes 10 minutess for the ice to melt in the first vessel, then find what time the ice in the vessel takes to melt.

- Watch Video Solution

17. At what rate a layer of ice will be formed if
the surrounding temperature is at $-10^{\circ} \mathrm{C}$?
Thermal conductivity of ice $=1.6 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. Initial thickness of ice is 1 mm

- Watch Video Solution

18. Initial ice layer on a pond is 10 mm . What
time will it take to form an addition of 5 mm
on it? Given K of ice $=1.6 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$,
temperature $=-10^{\circ} C$ and density of water

$$
=10^{3} \mathrm{kgm}^{-3}
$$

D Watch Video Solution

19. One end of a thick copper rod is immersed into a steam chamber and the other end h:as metal coiled tube through which cold water at $15^{\circ} \mathrm{C}$ is circulated. • If the length of the rod is
0.30 m , thickness 0.04 m , K of copper is 375
$W m^{-1} K^{-1}$ and specific heat of water 4200
$J k g^{-1} K^{-1}$, then calculate the final
temperature of 0.10 kg of water at the end of

10 minutes, the temperatllre at the other end being $80^{\circ} \mathrm{C}$.

D Watch Video Solution

20. If the thermal conductivity of the material of a conductor is $375 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$, then calculate the thermal resistance of a 20 mm
thick and 1.5 m length of the rod. If an identically shaped rod but of thermal conductivity $600 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ is connected in
(1) series and (2) parallel, then calculate the effective conductivities of the combinations.

D Watch Video Solution

21. A copper plate has an area of $250 \mathrm{~cm}^{2}$ at
$0^{\circ} \mathrm{C}$. Calculate the area of this plate at $60^{\circ} \mathrm{C}$
.Given coefficient of linear expansion of
copper $=1.7 \times 10^{-5} \wedge(\circ) \mathrm{C}$

D Watch Video Solution
22. A brass boiler has a base area of $0.15 m^{2}$ and thickness 1 cm . It boils water at the rate of

6 kg per minute when placed on a gas stove.
Estimate the temperature of the part of the
flame in contact with the boiler. Thermal conductivity of brass is $=109 \mathrm{Js}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$, Heat of vapourisation of water is $2256 \times 10^{3} \mathrm{Jkg}^{-1}$

