©゙ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

THERMODYNAMICS

One Mark Questions And Answers

1. What is thermodynamics?

2. What is a thermodynamic system ?

D Watch Video Solution

3. What is a thermodynamic surrounding ?

- Watch Video Solution

4. State the condition for thermodynamic equilibrium between two conducting bodies.

5. Explain thermodynamic equilibrium between

 two radiating bodies.
D Watch Video Solution

6. State Zeroth law of thermodynamics.

D Watch Video Solution

7. What is a diathermic wall ?

D Watch Video Solution

8. What is an adiabatic wall ?

- Watch Video Solution

9. What is meant by internal energy transfer.

10. Mention any one mode of energy transfer.

D Watch Video Solution

11. Given any one difference between heat and work in terms of energy transfer.

- Watch Video Solution

12. Given the mathematical form of the law of
thermodynamics with the explanation of
symbols used.

- Watch Video Solution

13. Name of law of coservation on which the first law of thermodynamics to based ?

- Watch Video Solution

14. Give the expression for work doen by a
system.

D Watch Video Solution
15. What is an isothermaol thermodynamci process ?

D Watch Video Solution

16. In an isothermal process, the quantity to
heat supplied is wholly converted into external
work on the surroundings. Justify the statement.

D Watch Video Solution
17. What will be the amount of heat distributed among the molecules per degree of freedom and per molecule?

D Watch Video Solution

18. What will be the energy associated with a molecule of gas having 'f' degree of freedom?

D Watch Video Solution

19. What will be the energy associated with Avogadro number of molecules. (1 mole) ?

D Watch Video Solution

20. Give the expression for energy associated
with the monoatomic gas in terms of universal
gas constant for 1 mole of gas.

D Watch Video Solution
21. Give the expression for total energy supllied at a constant pressure for 1 mole of gas.

D View Text Solution

22. Express degrees of freedom in terms of ratio of specific heat of a gas.

D Watch Video Solution
23. What is the number of degrees of freedom associated with a diatomic gas?

- Watch Video Solution

24. Give the formula to calculate the number of degrees of freedom of a polyatomic gas.
25. For a penta atomic system of a molecule which forms non-collinear arrangement, calculate the degrees of freedom (Assume pyramid structure)

D Watch Video Solution

26. Define the unit calorie.

D Watch Video Solution

27. Relate on calorie of heat in terms of joule.

D Watch Video Solution

28. Convert 5 cal in terms of J.

D Watch Video Solution
29. What is a PV indicator diagram (Isotherm)
?
30. Given example for intensive
thermodynamic state variables.

D Watch Video Solution
31. Give example for extensive thermodynamic state variable.

D Watch Video Solution
32. Say whether the product $P \Delta V^{\prime}$ is extensive or intensive.

D Watch Video Solution
33. What is an ideal quasi-static process ?

- Watch Video Solution

34. Write the isothermal relation between pressure and volume of an ideal gas.

- Watch Video Solution

35. Write adiabatic relation between pressure and volume of an ideal gas.

- Watch Video Solution

36. Write adiabatic relation between pressure and temperature of an ideal gas adiabatic pressure.
37. Write the relation between volume and temperature of an ideal gas undergoing an adiabatic process.

D Watch Video Solution

38. What is the change in the internal energy
of an ideal gas,at constant temperature
(isothermal process) ?
39. Name the parameter which remains constants during an adiatbatic process.

D Watch Video Solution
40. What is an isochoric process ?

- Watch Video Solution

41. Represent an isochoric process graphically.
42. What is an isobaric process ?

D Watch Video Solution
43. Represent an isobaric process graphically.

D Watch Video Solution

44. What is meant by a cyclic thermodynamic

- Watch Video Solution

45. Represent PV indicator diagram for a cyclic process.

- Watch Video Solution

46. Give the expression for work doen in an
isobaric process.

- Watch Video Solution

47. Explain why are pressue in a car tyre increases during driving ?

(Watch Video Solution

48. What is a heat engine?

D Watch Video Solution

49. Write the expression for efficiency of

Carnot's heat engine.

Two Mark Questions And Answers

1. Write the expression for work done in an
isothermal expansion and give the meanings of the sympbols.

D Watch Video Solution

2. Write the expression for work done in an adiabatic expansion and give the meaninigs of
the symbols.

- Watch Video Solution

3. Explain why the climate of a barbor two in more temperate than that of a town in a desert at the same latitude. (NCERT)

D Watch Video Solution

4. The coolant in a chemical or a nuclear plant
should have high specifice heat. Why ?

- Watch Video Solution

5. Two bodies at different temperatures
T_{1} and T_{2}, if brought in thermal contact do not necessarily settle to the mean temperature $\left(T_{1}-T_{2}\right) / 2$. Why ?

- Watch Video Solution

6. Calculate the work done by the gas is moving from D to E to F and to D. Refer the
following diagram.

- Watch Video Solution

7. State law of equipartition of energy.

(D)
Watch Video Solution
8. What is a refrigerator ? Why the expression
for coefficient of performance.

- Watch Video Solution

9. Can the coefficient of performance be infinity?

- Watch Video Solution

10. State Clausius and Kelvin Plank's statements of II law of thermodynamics.

- Watch Video Solution

11. Source and sink used in Carnot's heat engine have infinite thermal capacity. What does it mean ?

D Watch Video Solution

12. Can the internal energy of system be completely converted into work ? Give examples in support to your answer.

D Watch Video Solution

13. What are the values of specific heat of a gas in isothermal and adiabatic processes?

D Watch Video Solution

1. Apply the first law of thermodynamics to an isochoric process explain.

D Watch Video Solution

2. Apply first law of thermodynamics to an adiabatic process.
3. Write the four important parts of Carnot's ideal heat engine.

D Watch Video Solution

Five Marks Questions With Answers

1. Derive Mayer's equation from the I law of thermodynamics.
2. Show that for an isotheremal process, work $W=\mu R T \log _{e}\left(\frac{V_{2}}{V_{1}}\right)$ where symbols have their usual meaning.

- Watch Video Solution

3. Distinguish between isothermal and adiabatic processes.
4. Obtain an expression for the work done in a adiabatic process.

- Watch Video Solution

5. Show that efficiency of Caront's ideal heat
engine is $\eta=\left(1-\frac{T_{2}}{T_{1}}\right)$.
(Watch Video Solution
6. Explain the working of Carnot's heat engine with the help of graph.

D View Text Solution

Numericals With Solutions

1. A refrigerator is used to mainatain eatables
kept inside it at $9^{\circ} C$. If the room temperature
is $35^{\circ} C$, then calculate the coefficient to
performance. Calculate the amount of heat rejected to the surrounding.

D Watch Video Solution

2. The triple points of Ne and CO_{2} are 24.57 K and 216.55 K respectively. Express these temperatures in the Celsius and Fahrenheit scales.
3. A constant volume gas theremometer using
helium, records a pressure of 20.0 kPa at the triple point of water and pressure of $14.3 k P a$ at the temperature of dry ice. What is the temperature of dry ice.?

D Watch Video Solution

4. The electrical resistance in ohms of a cerbain thermomter varies with temperature according to
$R=R_{0}\left\{1+5 \times 10^{-3}\left(T-T_{0}\right)\right\}$.
resistance is 101.6Ω at the triple point of water, and 185.5Ω at the normal melting point of lead $(600.5 \mathrm{~K})$. What is the temperature when the resistance is 123.4Ω ?

D Watch Video Solution

5. A steel tape 1 m long is correctly cailbrated
for temperature of $27.0^{\circ} \mathrm{C}$. The length of a steel rod measured by this tape is found to be 63.0 cm on a hot day when the termperature is
$45.0^{\circ} \mathrm{C}$. What is the actual length of the steel rod on that day? What is the length of the same steel rood on a day when the temper ature is $27.0^{\circ} \mathrm{C} ? \alpha$ of steel is $1.20 \times 10^{-5 \circ} \mathrm{C}^{-1}$?

- Watch Video Solution

6. A hole is drilled in a copper sheet. The diameter of the hole is 4.24 cm at $27.0^{\circ} \mathrm{C}$.

What is the change in the diameter of the when the sheet is heated to $227^{\circ} C$?

Coefficient of linear expansion of copper

$$
=1.70 \times 10^{-5 \circ} C^{-1} ?
$$

D Watch Video Solution

7. A brass wire 1.8 m long at $27^{\circ} \mathrm{C}$ is held taut with a little tension b/w two rigid supports. If the wire is cooled to a temperature of $-39^{\circ} \mathrm{C}$, what is the tension developed in the wire, if its

$$
\begin{array}{lccc}
\text { diameter } & \text { is } & 2.0 & \mathrm{~mm}
\end{array} \text { ? }
$$

Watch Video Solution

8. A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8.0 kg . How much is the rise in temperature of the block in 2.5 minutes assuming 50\% of power is used up in heating the machine itself or lost to the surroundings? Specific heat of aluminum $=910 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

9. A copper block of mass 2.5 kg is heated in a
furance to temperature of $500^{\circ} \mathrm{C}$ and then placed on a large ice block. What is the maximum amount of ice that can melt?
(Specific heat of copper $=380 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$,
latetn heat of fusion of ice

$$
\left.=3.36 \times 10^{5} \mathrm{Jkg}^{-1}\right)
$$

10. A geyser heats water flowing at the rate of 3.0 litres per minute from 27° to $77^{\circ} \mathrm{C}$. If the geyser operates on a gas burner, what is the rate to consumption of the fuel if its heat of combustion is $4.0 \times 10^{4} \mathrm{~J} / \mathrm{g}$?

D Watch Video Solution

11. What amount of heat must be supplied to
$2.0 \times 10^{-2} \mathrm{~kg}$ of N_{2} (at room temperature) to
raise its temperature by $45^{\circ} \mathrm{C}$ at constant

$$
N_{2}=28, R=8.3 \mathrm{Jmole}^{-1} K^{-1}
$$

D Watch Video Solution

12. A tyre pumped at a pressure of 3.375 atm and at $27^{\circ} \mathrm{C}$ suddenly bursts. What is the final temperature? $(\gamma=1.5)$

- Watch Video Solution

13. The volume of 1 kg water is reduced by $91 \mathrm{~cm}^{3}$ on melting. Calculate the change in the internal energy when 2 kg ice melts at NTP.

D Watch Video Solution

14. A gas expands from 75 litre to 125 litre at a constant pressure of 4 atm. Calculate the work done by the gas during this expansion.

D Watch Video Solution

15. Calculate the amount of work done in taking the gas from the state (i) P to Q (ii) Q to
R (iii) R to P (iv) the entire cycle,

16. $1 g$ of water at atmospheric pressure and at $100^{\circ} \mathrm{C}, 1671 \mathrm{~cm}^{3}$ of water vapour is converted into cm^{3} water. Calculate (i) work doen against the surroundigs and (ii) increases in the internal energy.

D Watch Video Solution

17. The efficiency of a Carbot's heat engine is
0.25 . If on reducing the temperature of the sink by $50^{\circ} C$, the efficiency increase, 0.35 ,
then calculate the temperature of the source and sink.

D Watch Video Solution

18. The volume of N_{2} gas increases from $1 \mathrm{~cm}^{3}$
"to" $100 \mathrm{~cm}^{3}$ at a constant temperature of

300K. If there are 10 moles of gas present, then calculate the amount of work done by N_{2} on the surroundings.

- Watch Video Solution

19. The ratio of specific heats of a gas in 1.40 .

There are 200 moles of gas initially present.
The gas undergoes adiabatic expansion and as a result which, the temperature of the gas falls
from 400 K to 100 K . Give
$R=8.312 J \mathrm{~mole}^{-1} K^{-1}$. Calculate the amount or work done by the gas on the surroundings.

- Watch Video Solution

20. The working substance in a Carnot's heat engine absorbs $5 \times 10^{6} J$ of heat from the source and reject $2 \times 10^{6} \mathrm{~J}$ of heat of the sink.

Calculate the (i) heat converted into work and
(ii) efficiency of the engine.

D Watch Video Solution

21. Caclulate the change in entropy of a 1000 kg of water converted into steam. Latent heat of steam $=2.268 \times 10^{6} \mathrm{Jkg}^{-1}$
22. Under an increase of pressure of atmosphere, the volume of $1 m^{3}$ of ice is decreased to $0.986 \mathrm{~m}^{3}$. Calculate the fall in the freezing point of water.

D Watch Video Solution

23. A refrigerator is driven by a 1 HP motor
having an efficiency of 80%. The refrigerator works between $0^{\circ} \mathrm{C}$ and $38^{\circ} \mathrm{C}$. Calculate the
time required by the refrigerator to freeze 1
litre of water, heat of fusion of ice is $2.26 \times 10^{5} \mathrm{Jkg}^{-1}$.

D Watch Video Solution

24. A Carnot heat engine absorbs 600J of heat
from source of temperature 800 K and rejects
300J of heat to the sink. Calculate efficiency and temperature of the sink.

D Watch Video Solution

