© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

UNITS AND MEASUREMENTS

One Mark Questions And Answers

1. What is a unit?

2. What is measurement ?

- Watch Video Solution

3. Why fundamental units are called so ?

D Watch Video Solution
4. What are derived units ?

5. What is SIU ?

D Watch Video Solution
6. How many fundamental physical quantities are used for standard measurement ?

D Watch Video Solution
7. Name the two supplementary physical quantities.

D Watch Video Solution
8. Mention the SI units of length, mass, time, temperature, luminous intensity, electric current and amount of substance present.

D Watch Video Solution

9. Expand CGS unit.

D Watch Video Solution

10. What is MKS unit ?

- Watch Video Solution

11. Mention any one fundamental physical quantity.
12. Mention any one derived physical quantity.

D Watch Video Solution
13. Write the dimensional formula for planck's constant.

- Watch Video Solution

14. What are inferior planets?

- Watch Video Solution

15. What is meant by planet's elongation ?

D Watch Video Solution

Two Marks Questions With Answers

1. What are dimensions ? Give an example.

D Watch Video Solution

2. What is a dimensional formula ? Give an

 example for a physical quantity.- Watch Video Solution

3. What is meant by dimensional equation ?

Give an example.

- Watch Video Solution

4. Give any two examples for a dimensional constant.

D Watch Video Solution
5. Give any two examples for a dimensionless physical quantity.
6. Explain what is meant by dimensional analysis.

D Watch Video Solution
7. Define the term significant figures with an example.

D Watch Video Solution
8. What is meant by error in measurements ?

Give an example.

D Watch Video Solution
9. Find the fractional error in the
measurement of $x=A^{m} B^{n}$

- Watch Video Solution

10. Suggest any two methods of minimizing the errors.

D Watch Video Solution
11. Distinguish between random error and constant error.

- Watch Video Solution

12. What is meant by absolute error ?

- Watch Video Solution

13. Mention the number of significant figures in the following.
(i) $2.64 \times 10^{24} \mathrm{~kg}$
(ii) 64800 m
(iii) 6.320 J
(iv) $0.00076 \mathrm{~m}^{2}$

- Watch Video Solution

14. Each side is measured to be 7.203 m . What are the total surface area and the volume of the cube to appropriate significant figures ?

- Watch Video Solution

15. If $A=(12.0 \pm 0.1) \mathrm{cm}$ and $\mathrm{B}=(8.5 \pm 0.5)$
cm find (i) $\mathrm{A}+\mathrm{B}$) (ii) $\mathrm{A}-\mathrm{B}$

- Watch Video Solution

16. If the size of a nucleus (in the range of
10^{-15} to 10^{-14}) is scaled up to the tip of a
sharp pin, what roughly is the size of an atom
? Assume tip of the pin to be in the range $10^{-5} \mathrm{~m}$ to $10^{-4} \mathrm{~m}$.

D Watch Video Solution
17. Convert 48 kmph in terms ms^{-1}.
18. Convert $32.2 \mathrm{ft} s^{-2}$ in terms of $m s^{-2}$.

D Watch Video Solution

19. $\left(P+\frac{a}{V^{2}}\right)(V-b)=\mathrm{RT}$ is the real gas equation. Find the dimensions of $a \& b$.

D Watch Video Solution

20. Write the dimensional formula for (1)
voltage and (2) resistance.

Numericals With Solutions

1. The period of oscillation (T) of a simple pendulum depends on the probable quantities such as mass ' m ' of a bob, length 'l' of the pendulum and acceleration due to gravity 'g' at the place. Derive an equation using dimensional analysis.
2. The frequency ' n ' of a stretched string depends on length 'l' of a string, mass per unit length or linear density (m) and tension (T) or (F) acting on the string. Derive an equation connecting these quantities using

Dimensional Analysis.

D Watch Video Solution

3. If the surface tension (T) of a soap bubble depends upon excess of pressure radius ' r ' of
the bubble, then obtain an equation for the surface tension.

D Watch Video Solution
4. Convert N in terms of dynes

- Watch Video Solution

5. Convert 1 J of energy in terms of ergs.

- Watch Video Solution

6. Check the correctness of the equations,
(i)

$$
\begin{equation*}
s=u t+1 / 2 a t^{2} \tag{ii}
\end{equation*}
$$

and
$s_{n t h}=u+\frac{a}{2}(2 n-1)$

D Watch Video Solution

7. The sun's angular diameter is measured as

1920'. The distance ' D ' of the su from the
'Earth' is $1.496 \times 10^{11} \mathrm{~m}$. what is the diameter of the sun?
8. A physical quantity ' Q ' is given by Q $=\frac{A^{2} B^{3 / 2}}{C^{4} D^{1 / 2}}$. The percentage error in $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$,
E are $1 \%, 2 \%, 4 \%, 2 \%$ respectively. Calculate the minimum and maximum percentage errors in 'Q'

- Watch Video Solution

9. If two resistances of value
$R_{1}=(2.0 \pm 0.1) \Omega$ and $R_{2}=(12.3 \pm 0.2)$
are connected in (i) parallel and (ii) series then
find the error in the estimation of equivalent resistance.

D Watch Video Solution

10. The radius of a concave mirror measured
by spherometer is given by $R=\left(\frac{l^{2}}{6 h}+\frac{h}{2}\right)$
The values of 'l' and 'h' are 4 cm and 0.065 cm respectively. Compute the error measurement of radius of curvature.
11. The density ' ρ ' of a piece of metal of mass
' m ' and volume ' V ' is given by the formula
$\rho=m / V$. If $m=375.32 \pm 0.01 g, \mathrm{~V}=136.41$
$\pm 0.01 \mathrm{~cm}^{3}$. Find the percentage error in the measurement of density ' ρ '.

D Watch Video Solution

12. What is the distance in km of a quasar from which light takes 3.0 billion years to reach us.
13. During a total solar eclipse the desk of the moon almost covers the disk of the sun. If the angle measured is 1920 " and distance of the moon from the Earth is $3.84 \times 10^{5} \mathrm{~km}$ then calculate the diameter of the moon.

- Watch Video Solution

