

MATHS

BOOKS - NCERT MATHS (ENGLISH)

LINES AND ANGLES

Multiple Choice Questions

1. In figure, if AB || CD || EF, PQ || RS, \angle RQD =

 25° and \angle CQP = 60° , then \angle QRS is equal to

A. $85^{\,\circ}$

B. $135^{\,\circ}$

C. 145 $^{\circ}$

D. 110°

Answer: C

Watch Video Solution

2. If one angle of a triangle is equal to the sum

of the other two angles, then the triangle is

A. an isosceles triangle

B. an obtuse triangle

C. an equilateral triangle

D. a right triangle

Answer: d

Watch Video Solution

3. An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is

Answer: 'B

4. If the angles are in the ratio 5:3:7, then

the triangle is

A. an acute angled triangle

B. an obtuse angled triangle

C. a right angled triangle

D. an isosceles triangle

Answer: B

Watch Video Solution

5. If one of the angles of a triangle is $130^{\,\circ}$,

then the angle between the bisectors of the

other two angles can be

A. $50^{\,\circ}$

B. 65°

C. 145 $^{\circ}$

D. $155^{\,\circ}$

Answer: D

Watch Video Solution

6. In the figure, POQ is a line. The value of x is

A. $20^{\,\circ}$

B. 25°

C. 30°

D. $35^{\,\circ}$

Answer: A

Watch Video Solution

7. In the given figure, if $OP||RS, \angle OPQ = 110^{\circ}$ and $\angle QRS = 130^{\circ}$,

then $\angle PQR$ is equal to

A. $40^{\,\circ}$

B. $50\,^\circ$

C. 60°

D. 70°

Answer: C

8. Angles of a triangle are in the ratio 2:4:3.

The smallest angle of the triangle is

A. 60°

B. 40°

 $\mathsf{C.80}^\circ$

D. 20°

Answer: B`

9. For what value of x + y in figure will ABC be a

line? Justify your answer.

Watch	Video	Solution
The contract of the contract o	video	Joracion

10. Can a triangle have all angles less than 60°

? Given reason for your answer.

11. Can a triangle have two obtuse angles ?

Give reason for your answer.

Watch Video Solution

12. How many triangles can be drawn having its angles as 45° , 64° and 72° ? Give reason for your answer.

13. How many triangles can be drawn having its angles as 53° , 64° and 63° ? Give reason for your answer.

14. In the figure, find the value of x for which the lines l and m are parallel.

15. Two adjacent angles are equal. Is it necessary that each of these angles will be a right angles ? Justify your answer.

16. If one of the angles by two intersecting lines is a right angles, what can you say about the other three angles ? Give reason for your answer.

17. In the figure, which of the two lines are

parallel and why?

18. Two lines I and m , are perpendicular to the

same line n. Are I and m perpendicular to each

other? Give reason for your answer.

19. In the figure, OD is the bisector of $\angle AOC$,

OE is the bisector of $\angle BOC$ and $OD \perp OE$.

Show that the points A, O and B are collinear.

20. In the figure, $\angle 1=60^\circ\,$ and $\angle 6=120^\circ\,$

Show that the lines m and n are parallel.

21. AP and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines l and m (in the given figure). Show that

22. In the given figure, bisectors AP and BQ of the alternate interior angles are parallel,

then show that l || m.

23. In the figure, BA|| ED and BC|| EF. Show that

 $\angle ABC = \angle DEF.$

24. In the figure, BA || ED and BC || EF. Show $\angle ABC + \angle DEF = 180^{\circ}.$

25. In the figure, $DE \mid \mid QR$, AP and BP are bisectors of $\angle EAB$ and $\angle RBA$, respectively.

Find $\angle APB$.

26. A $\triangle ABC$ is right angled at A. L is a point on BC such that $AL \perp BC$. Prove that $\angle BAL = \angle ACB$.

Watch Video Solution

28. If two lines intersect prove that the vertically opposite angles are equal

30. A transversal intersects two parallel lines.

Prove that the bisectors of any pair of

corresponding angles so formed are parallel.

31. Prove that through a given point, we can

draw only one perpendicular to a given line.

32. Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other .

33. prove that triangle must have atleast two

acute angle

