

CHEMISTRY

BOOKS - JEEVITH PUBLICATIONS CHEMISTRY (KANNADA ENGLISH)

CHEMICAL KINETICS

Answer The Following Questions

1. Define rate of a reacion.

2. Give the unit of rate of reaction.

Watch Video Solution

3. What is average rate of reaction? Give its expression in terms of reactants and products.

4. What is instantaneous rate of a reaction? Give its expression in terms of reactants and products.

Watch Video Solution

5. What are the factors which influence rate of a reaction.

6. What is simple collision theory? Give its significance.

Watch Video Solution

7. Define order of a reaction.

Watch Video Solution

8. What is rate law?

9. Calculate the overall order of a reaction which has the rate expression.

(a) Rate =
$$k[A]^{1/2}[B]^{3/2}$$

(b) Rate
$$= k[A]^{2/2}[B]^{-1}$$

(c) Rate
$$= k[A]^{1/2}[B]^{-1}$$

Rate
$$= [A]^X [B]^Y = \text{Order} = x + y$$

10. A reaction is first order with respect to the reactant A and Second roder with respect to the reactant B in a reaction.

 $A+B o ext{ Product.}$

- (i) Write the differential rate equation.
- (ii) How is rate of reaction affected on increasing the concentration of B by 2 times.

11. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is

- (i) Doubled
- (ii) reduced to half?

- **12.** A reaction is first order in A and second order in B.
- (i) Write the differential rate equation.

(ii) How is rate affected on increasing the concentration of B three times?

(iii) How is rate affected when the concentration of both A and B are doubled?

Watch Video Solution

13. Show that the rate of first order reaction is doubled when concentration of the reactant is doubled.

14. What is zero order reaction? Give two examples.

Watch Video Solution

15. Give an example for zero order reaction.

Watch Video Solution

16. Rate $= k[NO]^2[O_2]^1$. By how many times does the rate of reaction change when the

volume of the reaction vessel is reduced to $1/3^{rd}$ of its original volume ? Will ther he any change in the order of the reaction.

17. What is first order reaction? Give two examples.

18. What is second order reaction? Give two examples.

Watch Video Solution

19. Give the unit for zero order first order and second order rate constants.

20. Unit of rate constant of a reaction is same as the unit of rate of reaction. What is the order of the reaction.

Watch Video Solution

21. Identify the reaction order from each of the following rate constants.

(i)
$$k=2.3 imes 10^{-3} Lmol^{-1} s^{-1}$$

(ii)
$$k = 3 \times 10^{-1} s^{-1}$$

22. Rate constant of a reaction is $k=3.14 imes 10^{-4} mol L^{-1} s^{-1}.$ What is the order of the reaction.

A. 0

B. 1

C. 2

D. 3

Answer: A

23. What is psuedo first order reaction? Give example.

Watch Video Solution

24. What is molecularity of a reaction?

25. Write the molecularity for the reaction

$$2HI \Leftrightarrow H_2 + I_2$$

Watch Video Solution

26. What is unimolecular reaction? Give an example.

27. What is bimolecular reaction? Give an example.

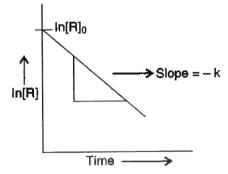
Watch Video Solution

28. What is ter molecular reaction? Give an example.

29. Give four differences between order and molecularity of a reaction.

Watch Video Solution

30. Derive an integrated rate equation for rate constant of a zero order reaction.



31. Derive the integrated rate equation for rate constant of a zero reaction.

Watch Video Solution

32. From the following graph, identify order of reaction and mention the unit of its rate constant.

33. What is half life period of a reaction? Show that half period for a zero order reaction is directly proportional to initial concentration.

Watch Video Solution

34. How many times does the $t_{1/2}$ of zero order reaction increases if the initial concentration of the reactant is doubled?

Watch Video Solution

35. In a zero order reaction, the time taken to reduce the concentration of reactant from 50% to 25% is 30 minutes. What is the time required to reduce the concentration from 25% to 12.5%?

36. What is half life period of a reaction? Show that half of a first order reaction is

independent of initial concentration.

Watch Video Solution

37. What happens to the half life period of a first order reaction if the concentration of the reactants is increased?

Watch Video Solution

38. A reaction completes 50% in 2 hours and 75% in 4 hours. What is the order of the

reaction. Give reason. **Watch Video Solution 39.** What is the effect of temperature on the rate of a reaction? **Watch Video Solution 40.** Write Arrhenius equation. Mention the symbols stands for. **Watch Video Solution**

41. Define temperature coefficient of a reaction. What is general value of it?

Watch Video Solution

42. Write

- i) Arrhenius equation.
- ii) The formula to calculate half life. Period of zero order reaction.

43. Write the energy distribution curve showing temperature dependence of rate of a reaction.

Watch Video Solution

44. What is activation energy?

45. Give equation to calculate activation energy when rate constants known at two different temperatures.

Watch Video Solution

46. What is catalyst. Give an example.

Watch Video Solution

47. How catalyst increases rate of a reaction.

48. What happens to the energy of activation of a reaction when positive catalyst is added.

49. Draw a graph of potential energy v/s reaction co-ordinate showing the effect of a catalyst on activation energy.

50. Explain the effect of catalyst on the activation energy of the reaction with the graph.

Watch Video Solution

51. Define collision frequency.

52. Give an expression to find out rate of a reaction according to collision theory.

Watch Video Solution

53. According to collision theory, what are the two factors that lead to effective collisions

Watch Video Solution

Problems Section

1. For the reaction $R \to P$, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate average rate of reaction.

Watch Video Solution

2. In a reaction 2A product, the concentration of A decreases from 0.5 mol L-1 to 0.4 mol L-1 in 10 minutes. Calculate the rate during this interval.

3. The conversion of molecules X to Y follows second order kinetics. IF concentration of X is increased to three times how will it affect the rate of formation of Y.

Watch Video Solution

4. The initial concentration of N_2O_5 in the following first order reaction $N_2O_5(g) o 2NO_2(g) + rac{1}{2}O_2(g)$ was $1.24 imes 10^{-2}$ mol L^{-1} at 318K. The

concentration of N_2O_5 after 60 mintues was $0.2 imes 10^{-2}$ mol $L^{-1}.$ Calculate the rate constant of the reaction.

Watch Video Solution

5. The rate constant of a certain first order reaction is $200S^{-1}$. What is its half life period ?

6. A certain first order reaction is half completed in 46 min. Calculate the rate constant and also time for 75% completion of the reaction.

Watch Video Solution

7. Show that in case of a first order reaction, the time taken for completion of 99.9% reaction is ten times the time required for half change of the reaction.

- **8.** Show that $t_{99\,\%}\,=2 imes t_{90\,\%}$
 - Watch Video Solution

9. Rate constant of a first order reaction is $0.0693~{
m min}^{-1}$. Calculate the percentage of the reactant remaining at the end of 60 minutes.

10. The rate constant for a first order reaction is $60s^{-1}$. How much time will it take to reduce the initial concentration of the reactant to its $1/16^{th}$ value.

Watch Video Solution

11. A first order reaction takes 40 min for 30% decompositon.

12. The half life for radioactive decay of ^{14}C is 5730 years. An archaeological artifact containing wood had only 80% of the ^{14}C found in a living tree. Estimate the age of the sample .

Watch Video Solution

13. A first order reaction is found to have a rate constant $K=5.5\times 10^{-14}S^{-1}$. Find the half-life of the reaction.

14. A first order reaction has a rate constant $1.15 imes 10^{-3} s^{-1}$. How long will 5g of this reacant take to reduce to 3g?

Watch Video Solution

15. Time required to decompose SO_2Cl_2 to half of its initial amount is 60 minutes. IF the decomposition is a first order reaction. Calculate the rate constant of the reaction.

16. The rate constant of a particular reaction doubles when the temperature changes from 300K to 310 K, calculate the energy of activation.

17. The rate constant of a raction at 500 K and 700 K are 0.02 s^{-1} and $0.07s^{-1}$ respectively.

Calculate the value of E_a

Watch Video Solution

18. The rate of a chemical reaction doubles for an increase of 10K in absolute temperature from 298K. Calculate E_a .

Watch Video Solution

19. The rate of a reaction becomes four times when the temperature changes from 293 K to

313 K. Calculate the energy of activation $\left(E_a\right)$ of the reaction aassuming that it does not change with temperature.

