© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA

 ENGLISH)

 ENGLISH)}

ANNUAL EXAM QUESTION PAPER 2015

Part A

1. Let * be a binary operation defined on the set of non-zero rational number, by $a * b=\frac{a b}{4}$. Find the identity element.

- Watch Video Solution

2. Write the set of the value of x for which $2 \tan ^{-1} x=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}$ holds.
3. Construct a 2 xx 2 matrix $A=\left[a_{i j}\right]$ whose elements are given by $\frac{1}{2}|-3 i+j|$.

- Watch Video Solution

4. Find the value of x for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$

- Watch Video Solution

5. Find $\frac{d y}{d x}$, if $\mathrm{y}=\sin \left(x^{2}+5\right)$.

- Watch Video Solution

6. Evaluate : $\int \frac{e^{x}(x-1)}{x^{2}} d x$.
7. Define negative of a vector.

- Watch Video Solution

8. Write the direction "cos"ines of x-axis.

- Watch Video Solution

9. Define feasible region.

- Watch Video Solution

10. If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$ find $P(A \cap B)$, where A and B are independent events.
11. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto, then $\operatorname{gof} A \rightarrow C$ is also onto.

- Watch Video Solution

2. Prove the following:
$\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \sin ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$

- Watch Video Solution

3. Prove that $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$

- Watch Video Solution

4. If the area of the triangle with vertices $(-2,0),(0,4)$ and $(0, k)$ is 4 square units, find the values of k u"sin"g determinants.

Watch Video Solution

5. Differentiate $\left(x+\frac{1}{x}\right)^{x}$ w.r.to x .

- Watch Video Solution

6. Find the slope of the tangent to the curve $y=\frac{x-1}{x-2}, x \neq 2$ at $x=10$.

- Watch Video Solution

7. Find $\frac{d y}{d x}$ given $x^{2}+x y+y^{2}=100$.

- Watch Video Solution

8. Evaluate, $\int \frac{\cos 2 x-\cos 2 a}{\cos x-\cos a} d x$.

(Watch Video Solution

Part C

1. Evaluate: $\int \frac{d x}{x-\sqrt{x}}$.

- Watch Video Solution

2. Find the order and degree, if defined of the differential equation.
$\frac{d^{2} y}{\left(d x^{2}\right)^{3}}+\left(\frac{d y}{d x}\right)^{2}+\sin \frac{d y}{d x}+1=0$.

- Watch Video Solution

3. Find $|\vec{b}|$,if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$.
4. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

5. Find the angle between the following pairs of lines:
$\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \quad \& \quad \vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k}$
Note : Angle between two lines is the angle between $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$

- Watch Video Solution

6. Let X denote the number of hours you study during a randomly selected school day.The probability that X can take the values of.x, has the following form, where K is some cons"tan"t.

- Watch Video Solution

7. Determine whether the relation R in the set $A=\{1,2,3, \ldots13,14\}$ defined as $R=\{(x-y), 3 x-y=0\}$ is reflexive, symmetric and transitive.

Watch Video Solution

8. If $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$, find x

- Watch Video Solution

9. If A and B are square matrices of the same order, then show that $(A B)^{-1}=B^{-1} A^{-1}$.

- Watch Video Solution

10. Verify Rolle's theorem for the function
$f(x)=x^{2}+2 x-8, x \in[-4,2]$.
11. If $x=\sqrt{a^{\sin ^{-1} t}}$ then prove that $\frac{d y}{d x}=\frac{-y}{x}$

- Watch Video Solution

12. Find two positive number whose sum is 15 and the sum of whose squares is minium.

Watch Video Solution

13. Evaluate: $\int x \tan ^{-1} x d x$

- Watch Video Solution

14. Evaluate: $\int_{0}^{2} e^{x} d x$ as a limit of sum.
15. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $\mathrm{x}=3$.

- Watch Video Solution

Part D

1. Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \vec{a} and \vec{b} internally in the ratio $m: n$ is $\frac{m \vec{b}+n \vec{a}}{m+n}$

- Watch Video Solution

2. Show that the four points which position vectors.
$4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k} \quad$ are coplanar.
3. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $z+y+z-2=0$ and the point $(2,2,1)^{\prime}$.

- Watch Video Solution

4. Form the differential equation of the circles touching the x-axis at orgin.

- Watch Video Solution

5. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accident is $0.01,0.03$ and 0.15 respectively. One of the insured person meets with an accident. What is the probability that he is a cooter driver?

- Watch Video Solution

6. Let $\mathrm{R}+$ be the set of all non-negative real numbers. Show that the function $f: R+\rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$ is invertible and write the inverse of f .

- Watch Video Solution

7. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$ then show that $A^{3}-23 A-40 I=0$

(Watch Video Solution

8. Use the product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & -0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equations
$x-y+2 z=1$
$2 y-3 z=1$
$3 x-2 y+4 z=2$
9. If $y=A e^{m x}+B e^{n x}$, prove that $\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0$.

- Watch Video Solution

10. A particle move along the curve $6 y=x^{3}+2$.Find the points on the curve at which y-coordinate is changing 8 times as fast as the x coordinates.

- Watch Video Solution

11. Find the integral of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ with respect to x and hence find $\int \frac{1}{\sqrt{7-6 x-x^{2}} d x}$

- Watch Video Solution

12. Find the area of the triangle whose vertices are :
$(2,3),(-1,0),(2,-4)$

- Watch Video Solution

13. Find the general solution of the differential equation $\frac{d y}{d x}+(\sec x) y=\tan x,\left(0 \leq x \leq \frac{\pi}{2}\right)$.

- Watch Video Solution

14. Derive the equation of a line in space passing through a given pont and parallel to a given vector in both vector and Cartesian form.

- Watch Video Solution

15. A die is thrown 6 times. If getting an odd number is success, What is the probability
(a) 5 successes
(b) at least 5 successes
(c) at most 5 successes

- Watch Video Solution

Part E

1. Prove that $\int_{-a}^{a} d x=\left\{\begin{array}{ll}2 \int_{0}^{a} f(x) d x & \text { if } f(x) \text { is even } \\ 0 & \text { if } f(x) \text { is odd }\end{array}\right.$ and hence evaluate
(a) $\int_{-1}^{1} \sin ^{5} x \cos ^{4} x d x$.

D Watch Video Solution

2. $\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$.
3. A manufacturer produces nuts and bolts. It takes 1 hr of work on machine A and 3 hr on machine B to produce a package of nuts and bolts . He earns a profit of Rs 17.50 per package on nuts and Rs 7.00 per package on bolts. How many package of each should be produced each most 12 h a day to maximize the profit?

- Watch Video Solution

4. (b) Find the value of K so that the function $f(x)=[(K x+1),(3 x-5), \quad$ if $x \leq 5, \quad$ if $x>5] a t x=5 \quad$ is a continuous function.

- Watch Video Solution

