©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA

ENGLISH)

ANNUAL EXAM QUESTION PAPER MARCH 2018

Part A

1. Define a bijective function.

- Watch Video Solution

2. Write the principal value branch of $\cos ^{-1} x$.
3. Construct a 2×2 matrix, $A=\left[a_{i j}\right]$, whose elements are given by $a_{i j}=\frac{i}{j}$

- Watch Video Solution

4. If A is invertible matrix of order 2 then find $\left|A^{-1}\right|$.

- Watch Video Solution

5. If $y=e^{3 x}, \quad$ find $\frac{d y}{d x}$
6. Find: $\int \frac{x^{3}-1}{x^{2}} d x$

D Watch Video Solution

7. Find unit vector in the direction of vector $\hat{i}+\hat{j}+2 \hat{k}$

- Watch Video Solution

8. If a line makes angle $90^{\circ}, 60^{\circ}$ and 30° with the positive direction of x, y and z-aixs respectively, find its direction cosines.

- Watch Video Solution

9. Define optimal solution in linear programming problem.
10.

$$
P(A)=\frac{7}{13}, P(B)=\frac{9}{13} \text { and } P(A \cap B)=\frac{4}{13}, \text { find } P(A / B)
$$

D Watch Video Solution

Part B

1. Let * be a binary operation on Q defind by $a \cdot b=\frac{a b}{2}, \forall a, b \in Q$ Determine whether * is associative or not.

- Watch Video Solution

2. Simplify the following:

If $\sin \left\{\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right\}=1$ find x

D Watch Video Solution

> 3. Write the simplest from of $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\frac{\pi}{2}$

D Watch Video Solution

4. Find the area of the triangle whose vertices are $(-2,-3),(3,2)$ and $(-1,-8)$ by using determinant method.

- Watch Video Solution

5. Differentiate : $x^{\sin x}$ with respect to x .

D Watch Video Solution

6. Find $\frac{d y}{d x}$ given $x^{2}+x y+y^{2}=100$.

- Watch Video Solution

7. Find the slope of the tangent to the curve $y=x^{3}-x$ at $x=2$.

- Watch Video Solution

8. Integrate $\frac{e^{\tan ^{-1} x}}{1+x^{2}}$ with respect to x .
9. Evaluate : $\int_{2}^{3} \frac{x d x}{x^{2}+1}$

(-) Watch Video Solution

10. Find the order and degree of the differential equation
$\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$

D Watch Video Solution

11. Find the projection of the vector $\hat{i}+3 \hat{j}-7 \hat{k}$ on the vector $7 \hat{i}+\hat{j}+8 \hat{k}$

- Watch Video Solution

12. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $b=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

13. Find the angle between the planes whose vector equation are
$r .(2 \hat{i}+2 \hat{j}-3 \hat{k})=5, r .(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$.

- Watch Video Solution

14. A random variable X has the following probability distribution :

X	0	1	2	3	4
$P(X)$	0.1	k	$2 k$	$2 k$	k

$P(X \geq 2)$

1. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=$ $\{(a, b):|a-b|$ is even $\}$, is an equivalence relation.

D Watch Video Solution

2. Prove that $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$

D Watch Video Solution

3. By using elementary transformations, find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$
4. If $\mathrm{x}=\operatorname{sint} \mathrm{y}=\cos 2 \mathrm{t}$ then prove that $\frac{d y}{d x}=-\sin \mathrm{t}$

- Watch Video Solution

5. Verify Rolle's theorem for the function $f(x)=x^{2}+2, x \in[-2,2]$

- Watch Video Solution

6. Find two number whose sum is 24 and whose product is larger as possible.

- Watch Video Solution

7. Evaluate: $\int \frac{x}{(x+1)(x+2)} d x$

- Watch Video Solution

8. Find: $\int e^{x} \sin x d x$.

- Watch Video Solution

9. Find the area of the region bounded by the curve $y=x^{2}$ and the line $y=4$.

- Watch Video Solution

10. Form the differential equation representing the family of
curves $y=a \sin (x+b)$ where a, b are arbitrary constant.

(D) Watch Video Solution

11. Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \vec{a} and \vec{b} internally in the ratio $m: n$ is $\frac{m \vec{b}+n \vec{a}}{m+n}$

- Watch Video Solution

12. Find x such that the four point $A(3,2,1), B(4, x, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.

- Watch Video Solution

13. Find the equation of the plane through the intersection of the planes. $3 x-y+2 z=0$ and $x+y+z-2=0$ and the point $(2,2,1)$
14. A beg contains 4 red and 4 black, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

- Watch Video Solution

Part D

1. Let $\mathrm{R}+$ be the set of all non-negative real numbers. Show that the function $f: R+\rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$ is invertible and write the inverse of f.
2. If

If $\quad \mathbf{A}=\left[\begin{array}{rrr}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$,
$C=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$, calculate $A C, B C$ and $(A+B) C$.
Also verify that $(\mathbf{A}+\mathbf{B}) \mathrm{C}=\mathbf{A C}+\mathbf{B C}$.

- Watch Video Solution

3. Solve the following system of linear equations by matrix method.

$$
x-y+2 z=7
$$

$3 x+4 y-5 z=-5$
$2 x-y+3 z=12$
4. If $y=\left(\tan ^{-1} x\right)^{2}$ then show that $\left(x^{2}+1\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(x^{2}+1\right) \frac{d y}{d x}=2$

- Watch Video Solution

5. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the base. How fast height of the sand cone increasing when the height is 4 cm ?

- Watch Video Solution

6. Find the integral of $\frac{1}{x^{2}+a^{2}}$ with respect to x and hence find $\int \frac{1}{x^{2}-6 x+13} d x$.
7. Using integration find the area of the region bounded by the triangle whose vertices are (1,0),(2,2) and (3,1).

- Watch Video Solution

8. Find the general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2} \log x$.

- Watch Video Solution

9. Derive the equation of a line in space passing through two given plots both in vector and Cartesian form.
10. If a fair coin is tossed 10 times, find the probability of.
(i) exactly six heads and (ii) atleast six heads.

- Watch Video Solution

11. If a fair coin is tossed 10 times, find the probability of.
(i) exactly six heads and (ii) atleast six heads.

- Watch Video Solution

Part E

1. Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ and hence evaluate the following:
(e) $\int_{0}^{2} x \sqrt{2-x} d x$.
2. Solve the following problem graphically

Minimise and Maximise

$$
z=3 x+9 y
$$

Subject to the constraints:
$x+3 y \leq 60, x+y \geq 10, x \leq y x \geq 0, y \geq 0$

- Watch Video Solution

3. Find the relationship between a and b so that the function defined by
$f(x)=\left\{\begin{array}{lll}a x+1 & \text { if } & x \leq 3 \\ b x+3 & \text { if } & x>3\end{array}\right.$ is continuous at $\mathrm{x}=3$.
