

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA ENGLISH)

ANNUAL EXAMINATION QUESTION PAPER JUN-2017

1. Find the identify element for the binary operation *, defined on the

set of Q of rational number, by $a \cdot b = rac{ab}{4}$

1. Write the values of x for which $an^{-1} rac{1}{x} = \cot^{-1} x$, holds.

Watch Video Solution

2. Construct a 2 imes 2 matrix, $A=ig[a_{ij}ig]$, whose elements are given by .

Watch Video Solution

3. Find the value of x for which

$$egin{array}{c|c} 3 & x \ x & 1 \end{array} = egin{array}{c|c} 3 & 2 \ 4 & 1 \end{array}$$

Watch Video Solution

4. Find
$$rac{dy}{dx}$$
 if y $=$ sin (x^2)

9. If P(A) = 0.8 and P(B/A) = 0.4 then find $P(A \cap B)$

2. Prove the following:

$$2 an^{-1}x = \cos^{-1}igg(rac{1-x^2}{1+x^2}igg), x \ge 0$$

$$\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$$

4. Using determinant method, find the area of the triangle whose vertices are (1,0),(6,0) and (4,3).

Watch Video Solution

5. Differentiate $(\sin x)^x$ with respect to x.

Watch Video Solution

6. Find
$$rac{dy}{dx}, ext{ if } 2x+3y=\sin y$$

7. Find the point on the curve $rac{x^2}{4}+rac{y^2}{25}=1$ at which the tangents

are parallel to x-axis.

$$rac{d^4y}{dx^4}+rac{\sin(d^3y)}{dx^3}=0$$

11. If
$$\overrightarrow{a}$$
 is a unit vector and $\left(\overrightarrow{x}-\overrightarrow{a}\right)$. $\left(\overrightarrow{x}+\overrightarrow{a}\right)=8$, then find $\left|\overrightarrow{x}\right|$

12. Find the area of the parallelogram whose adjacent sides are given by the vectors $\overrightarrow{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $b = \hat{i} - \hat{j} + \hat{k}$.

Watch Video Solution

13. Find the angle between the pair of lines given by $\vec{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda \left(3\hat{i} + 2\hat{j} + 6\hat{k}\right), \vec{r} = 7\hat{i} - 6\hat{k} + \mu \left(\hat{i} + 2\hat{j} + 2\hat{k}\right)$

14. If A and B are two adjacent events, then prove that the probability

of occurance of atleast one of A and B is given by 1 - P(A')P(B')

3. By using elementary transformations, find the inverse of $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$

Watch Video Solution

4. Find
$$\frac{dy}{dx}$$
, if $x = a \left(\cos t + \log \tan \frac{t}{2} \right), y = a \sin t$.

Watch Video Solution

5. Verify Mean Value Theorem for the function $f(x) = x^2$ in the interval [2,4].

6. Find two positive number whose sum is 15 and the sum of whose squares is minium.

7. Evaluate:
$$\int \!\! rac{x}{(x+1)(x+2)} dx$$

8. Evaluate
$$\int \frac{x \cos^{-1} x}{\sqrt{1-x^2} dx}$$

Watch Video Solution

9. Find the area bounded by the curve y=cos x between x=0- and

 $x = 2\pi$

10. Find the equation of a curve passing through the point (-2,3), given

that slope of the tangent to the curve at any point (x,y) is $\frac{2x}{y^2}$

11. Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \overrightarrow{a} and \overrightarrow{b} internally in the ratio m:n is $\frac{m\overrightarrow{b}+n\overrightarrow{a}}{m+n}$

Watch Video Solution

12. Find x such that the four point A(3,2,1),B(4,x,5),C(4,2,-2) and D(6,5,-1) are coplanar.

Watch Video Solution

13. Find the vector and cartesian equation of the plane which passe3s throught the points (5,2,-4) and perpendicular to the line with direction ratios 2,3,-1.

14. A man is known to speak trugth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a xsix.

Watch Video Solution
Part D
1. Prove that the funciton $f: R \to R$ defined by f(x)=4x+3 is invertible and find the inverse of f. Watch Video Solution
2. If $A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$ Calculate AC, BC and (A+B)C. Also verify that (A+B)C=AC+BC.

3. Solve the following system of equations by matrix method.

$$x + y + z = 6$$

- y + 3z = 11
- x 2y + z = 0

4. If y=3 cos(log x)+4 sin(log x), show that $x^2y_2 + xy_1 + y = 0$

5. Sand is pouring from a pipe at the rate of $12cm^3/s$. The falling sand forms a cone on the top of ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4cm?

6. Find the integral of $\sqrt{a^2+x^2}$ with respect to x and hence evaluate

$$\int \sqrt{1+x^2} dx$$

Watch Video Solution

7. Using the method of integration, find the smaller area enclosed by

the circle $x^2 + y^2 = 4$ and the line x+y=2.

Watch Video Solution

8. Find the general solution of the differential equation $ydx - ig(x+2y^2ig)dy = 0$

2. Prove that
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

4. for what value of k is the funcation .

$$f(x)=egin{cases} kig(x^2-2xig), & ext{if} & x\leq 0\ 4x+1, & ext{if} & x>0 \end{cases}$$

```
(i) continuous at x=0? (ii) continuous at x= 1?
```

(iii) continuous at x = -1?