©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA

 ENGLISH)
ANNUAL EXAMINATION QUESTION PAPER JUN-2017

1. Find the identify element for the binary operation *, defined on the set of Q of rational number, by $a \cdot b=\frac{a b}{4}$

- Watch Video Solution

1. Write the values of x for which $\tan ^{-1} \frac{1}{x}=\cot ^{-1} x$, holds.

- Watch Video Solution

2. Construct a 2×2 matrix, $A=\left[a_{i j}\right]$, whose elements are given by $a_{i j}=\frac{i}{j}$

- Watch Video Solution

3. Find the value of x for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$

(D) Watch Video Solution

4. Find $\frac{d y}{d x}$ if $\mathrm{y}=\sin \left(x^{2}\right)$
5. Find $\int \cos 3 x d x$

- Watch Video Solution

6. Find unit vector in the direction of vector $\hat{i}+\hat{j}+2 \hat{k}$

- Watch Video Solution

7. Write the direction consines of y-axis.

- Watch Video Solution

8. Define optimal solution in linear programming problem.
9. If $P(A)=0.8$ and $P(B / A)=0.4$ then find $P(A \cap B)$

- Watch Video Solution

Part B

1. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto, then $\operatorname{gof} A \rightarrow C$ is also onto.

- Watch Video Solution

2. Prove the following:
$2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), x \geq 0$

- Watch Video Solution

3. Simplify the following:
$\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)$

- Watch Video Solution

4. Using determinant method, find the area of the triangle whose vertices are (1,0),(6,0) and (4,3).

- Watch Video Solution

5. Differentiate $(\sin x)^{x}$ with respect to x .

- Watch Video Solution

6. Find $\frac{d y}{d x}$, if $2 x+3 y=\sin y$
7. Find the point on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are parallel to x-axis.

- Watch Video Solution

8. Evaluate: $\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x$.

(D) Watch Video Solution

9. Evaluate: $\int \frac{x-3}{(x-1)^{3}} e^{x} d x$

D Watch Video Solution

10. Find the order and degree, it defined of the differential equation $\frac{d^{4} y}{d x^{4}}+\frac{\sin \left(d^{3} y\right)}{d x^{3}}=0$
11. If \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$

- Watch Video Solution

12. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $b=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

13. Find the angle between the pair of lines given by $\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}), \vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$

D Watch Video Solution

14. If A and B are two adjacent events, then prove that the probability of occurance of atleast one of A and B is given by $1-P\left(A^{\prime}\right) P\left(B^{\prime}\right)$

D Watch Video Solution

Part C

1. Check whether the relation R defined in the set $\{1,2,3,4,5,6\}$ as $R\{(a, b)$: $\mathrm{b}=\mathrm{a}+1)\}$ is reflecxive or symmetric.

- Watch Video Solution

2. Solve $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

- Watch Video Solution

3. By using elementary transformations, find the inverse of $A=\left[\begin{array}{ll}1 & 2 \\ 2 & -1\end{array}\right]$

(D) Watch Video Solution

4. Find $\frac{d y}{d x}, \quad$ if $x=a\left(\cos t+\log \tan \frac{t}{2}\right), y=a \sin t$.

- Watch Video Solution

5. Verify Mean Value Theorem for the function $f(x)=x^{2}$ in the interval [2,4].

(D) Watch Video Solution

6. Find two positive number whose sum is 15 and the sum of whose squares is minium.
7. Evaluate: $\int \frac{x}{(x+1)(x+2)} d x$

D Watch Video Solution

8. Evaluate $\int \frac{x \cos ^{-1} x}{\sqrt{1-x^{2}} d x}$

D Watch Video Solution

9. Find the area bounded by the curve $y=\cos x$ between $x=0$ - and $x=2 \pi$

- Watch Video Solution

10. Find the equation of a curve passing through the point $(-2,3)$, given that slope of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$

(D) Watch Video Solution

11. Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \vec{a} and \vec{b} internally in the ratio $m: n$ is $\frac{m \vec{b}+n \vec{a}}{m+n}$

- Watch Video Solution

12. Find x such that the four point $A(3,2,1), B(4, x, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.

- Watch Video Solution

13. Find the vector and cartesian equation of the plane which passe3s throught the points $(5,2,4)$ and perpendicular to the line with direction ratios 2,3,-1.
14. A man is known to speak trugth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a xsix.

- Watch Video Solution

Part D

1. Prove that the funciton $f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+3$ is invertible and find the inverse of f.

- Watch Video Solution

2. If $A=\left[\begin{array}{lll}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right], B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$ and $C=\left[\begin{array}{l}2 \\ -2 \\ 3\end{array}\right]$

Calculate $A C, B C$ and $(A+B) C$. Also verify that $(A+B) C=A C+B C$.
3. Solve the following system of equations by matrix method.
$x+y+z=6$
$y+3 z=11$
$x-2 y+z=0$

- Watch Video Solution

4. If $\mathrm{y}=3 \cos (\log \mathrm{x})+4 \sin (\log \mathrm{x})$, show that $x^{2} y_{2}+x y_{1}+y=0$

- Watch Video Solution

5. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the top of ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm ?
6. Find the integral of $\sqrt{a^{2}+x^{2}}$ with respect to x and hence evaluate $\int \sqrt{1+x^{2}} d x$

- Watch Video Solution

7. Using the method of integration, find the smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $\mathrm{x}+\mathrm{y}=2$.

- Watch Video Solution

8. Find the general solution of the differential equation $y d x-\left(x+2 y^{2}\right) d y=0$

- Watch Video Solution

9. Derive the equation of a line in space passing through two given plots both in vector and Cartesian form.

- Watch Video Solution

10. If a fair coin is tossed 10 times, find the probability of.
(i) exactly six heads and (ii) atleast six heads.

- Watch Video Solution

Part E

1. Minimize $z=-3 x+4 u$ subject to the constraints
$x+2 y \leq 8$
$3 x+2 y \leq 12$
$x \geq 0, y \geq 0$ by graphical method.
2. Prove that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$

D Watch Video Solution

3.

Prove
that
$\int_{-a}^{a} f(x) d x=\left\{\begin{array}{ll}2 \int_{0}^{a} f(x) d x & \text { if } \mathrm{f}(\mathrm{x}) \text { is an even function } \\ 0 & \text { if } \mathrm{f}(\mathrm{x}) \text { is an odd function }\end{array}\right.$ and hence
evaluate $\int^{\pi / 2}\left(x^{3}+x \cos x\right) d x$.

$$
-\pi / 2
$$

- Watch Video Solution

4. for what value of k is the funcation .
$f(x)=\left\{\begin{array}{lll}k\left(x^{2}-2 x\right), & \text { if } & x \leq 0 \\ 4 x+1, & \text { if } & x>0\end{array}\right.$
(i) continuous at $\mathrm{x}=0$? (ii) continuous at $\mathrm{x}=1$?
(iii) continuous at $\mathrm{x}=-1$?

- Watch Video Solution

