

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA ENGLISH)

APPLICATIONS OF INTEGRALS

Three Marks Questions With Answers

1. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 4, x = 9 and

the x-axis in the first quadrant.

2. Find the area of the region bounded by the curve $y^2=x$ and the lines x=1, x=4 and the X-axis.

Watch Video Solution

3. Find the area of the region bounded by $y^2 = 9x, x = 2, x = 4$ and the X-axis in the

first quadrant.

4. Find the area of the region bounded by $x^2 = 4y, y = 2, y = 4$ and the Y-axis in the

first quadrant.

Watch Video Solution

5. Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.

 $y^2 = 4x$ and y = 2x is

8. Find the area of the region bounded by the

curve $y = x^2$ and the line y = 4.

Five Marks Questions With Answers

1. Find the area of the region bounded by the

ellipse
$$\displaystyle rac{x^2}{16} + \displaystyle rac{y^2}{9} = 1.$$

2. Find the area of the region bounded by the

ellipse
$$rac{x^2}{4}+rac{y^2}{9}=1.$$

Watch Video Solution

3. Find the area of the region in the first quadrant enclosed by X-axis and $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$.

5. The are between $x = y^2$ and x=4 is divided into two equal parts by the line x = a, find the value of a.

7. Find the area of the circle $4x^2 + 4y^2 = 9$

which is interior to the parabola $x^2 = 4y$.

8. Find the area bounded by the curve $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$. Watch Video Solution

9. Find the area of the region bounded by the curves $y=x^2+2, y=x, x=0~~{
m and}~~x=3$

10. Using integration, find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

Watch Video Solution

11. Using integration find the area of the triangular region whose sides have the equations Y=2x+1, y=3x+1 and x=4.

12. Using the method of integration, find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x+y=2.

Watch Video Solution

13. Find the area of the region enclosed by the

parabola $x^2=y,$ the line y=x+2 and the X-axis.

14. Using method of integration find the area

bounded by the curve |x| + |y| = 1.

Watch Video Solution

15. Find the area of the region bounded by the

parabola $y = x^2$ and y = |x|.

16. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B(4, 5) and C(6, 3).

1. Using integration, find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

Watch Video Solution

2. Find the area of the circle $4x^2 + 4y^2 = 9$

which is interior to the parabola $x^2 = 4y$.

3. Find the area of ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$$
, $(a > b)$ by the method of integration and hence find the area of the ellipse $\frac{x^2}{16} + \frac{y^2}{19} = 1$.
Vatch Video Solution

4. Find the area of the region in the first quadrant method enclosed by the x-axis, the line y=x and the circle $x^2 + y^2 = 32$.

5. Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the ordinates x=0 and x=ae, where $b^2 = a^2(1-e^2)$ and e < 1.