©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA
 ENGLISH)

MODEL QUESTION PAPER 1

Part A

1. The operation * defined $a * b=a$. Is *a binary operation on z.

- Watch Video Solution

2. Write the range of the principal value branch of the function $y=\sin ^{-1} x$
3. Define a diagonal matrix.

- Watch Video Solution

4. If $A=\left[\begin{array}{ll}4 & 6 \\ 7 & 6\end{array}\right]$ find $|3 A|$

- Watch Video Solution

5. Write the points of discontinuity for the function $f(x)=[x],-3<x<3$

- Watch Video Solution

6. Evalute $\int \operatorname{cosecx}(\cos$ ecs-cot x$) \mathrm{dx}$
7. find the direction ratios of the vector, joining the points $P(2,3,0)$ and $\mathrm{Q}(-1,-2,-3)^{\prime}$ direction from P to Q .

- Watch Video Solution

8. Find the equation of the plane with the intercept 2,3 and 4 on x, y and z axes respectively.

- Watch Video Solution

9. Define optimal solution in linear programming problem.

- Watch Video Solution

10. Let A and B be independent events with $P(A)=0.3$ and $P(B)=0.4$,

Find

$$
P(A \cap B)
$$

Part B

1. Find gof and fog given $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$.

- Watch Video Solution

2. Write the following in the simplest form of $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\frac{\pi}{2}$

- Watch Video Solution

3. Prove that $2 \sin ^{-1}\left(\frac{3}{5}\right)=\tan ^{-1}\left(\frac{24}{1}\right)$

- Watch Video Solution

4. Find the area of a triangle whose vertices are (1,3), (2,5) and (7,5) using determinants

Watch Video Solution

5. Find $\frac{d y}{d x}, \quad$ if $2 x+3 y=\sin y$

- Watch Video Solution

6. If $x=a t^{2}, \mathrm{y}=2$ at show that $\frac{d y}{d x}=\frac{1}{t}$

- Watch Video Solution

7. Find the approximate change in the volume V of a cube of side x meters caused by increasing side by 2%.
8. Evalute: $\int \sin ^{3} x d x$

(Watch Video Solution

9. $\int_{0}^{\pi / 2} \cos 2 x d x$.

- Watch Video Solution

10. Find the order and degree of the differential equation, $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$

- Watch Video Solution

11. Find a vector in the direction of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}$ that has magnitude 7 units.
12. If $\widehat{a}=5 \hat{i}-\hat{j}-3 \widehat{K}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.

- Watch Video Solution

13. Find the vector equation of the line, passing through the points $(-1,0,2)$ and ($3,4,6$)

- Watch Video Solution

14. Two coins are tossed once, where

$$
\text { E : no tail appears } \quad \text { F : no head appears }
$$

Find $P(E / F)$

- Watch Video Solution

Part C

1. Prove that the relation R defined on the set of real numbers R as $R=\left\{(a, b): a \leq b^{2} \forall a, b \in R\right\}$ is neither reflexive nor symmetric nor transitive.

- Watch Video Solution

2. Prove that $\tan ^{-1} x+\tan ^{-1} \frac{2 x}{1-x^{2}}=\tan ^{-1}\left[\frac{3 x=x^{3}}{1-3 x^{2}}\right],|x|<\frac{1}{\sqrt{3}}$

- Watch Video Solution

3. Find the values of x, y and z in the following matrices. $\left(\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right)=\left(\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right)$

- Watch Video Solution

4. Differentiate $\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}$ with respect to x
5. If $y=\sin ^{-1}\left[\frac{2^{x+1}}{1+4^{x}}\right]$ find $\frac{d y}{d x}$.

- Watch Video Solution

6. Find the intervals in which the function f given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is
(a) strictly increasing (b) strictly decreasing?

- Watch Video Solution

7. Evalute: $\int \frac{(1+\log x)^{2}}{x} d x$

Watch Video Solution
8. Evaluate $\int \frac{x \cos ^{-1} x}{\sqrt{1-x^{2}} d x}$
9. Find the area between the curves $y=x^{2}$ and $y=x$

- Watch Video Solution

10. Form the differential equation representing the family of curves $y=a \sin (x+b)$ where a,b are arbitrary constant.

- Watch Video Solution

11. Find the area of a triangle having the points $\mathrm{A}(1,1,1) \mathrm{B}(1,2,3)$ and $\mathrm{C}(2,3,1)$ as its vertices.

- Watch Video Solution

12. Prove that $[\vec{a}, \vec{b}, \vec{c}+\vec{d}]=[\vec{a}, \vec{b}, \vec{c}]+[\vec{a}, \vec{b}, \vec{d}]$.
13. Find the distance between the parallel lines $\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+m(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+n(2 \hat{i}+$

D Watch Video Solution

14. Two cards are drawn successfully with replacement from a wellshuffled pack of 52 cards. Find the probability distribution of number of aces.

(Watch Video Solution

Part D

1. Let $f: N \rightarrow R$ be defined by $f(x)=4 x^{2}+12 x+15$, show that $f: N \rightarrow S$, where S is the range of f , is invertible. Also find the inverse.
2. Verify $(A+B) C=A C+B C$
if $A=\left(\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right), B=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right)$ and $C=\left(\begin{array}{c}2 \\ -2 \\ 3\end{array}\right)$

- Watch Video Solution

3. Solve the following system of linear equations by matrix method.
$x-y+2 z=7$
$3 x+4 y-5 z=-5$
$2 x-y+3 z=12$

Watch Video Solution
4. Find the integral of $\sqrt{x^{2}+a^{2}}$ w.r.t. x and hence evaluate $\int \sqrt{x^{2}+4 x+6}, \mathrm{dx}$.
5. Using integration, find the area of region bounded by the triangle whose vertices are $(-1,0),(1,3)$ and $(3,2)$.

- Watch Video Solution

6. Using integration, find the area of region bounded by the triangle whose vertices are $(-1,0),(1,3)$ and $(3,2)$.

- Watch Video Solution

7. Find the general solution of the differential equation $y d x-\left(x+2 y^{2}\right) d y=0$

- Watch Video Solution

8. Derive the equation of a plane perpendicular to a given vector and passing through a given point in both vector form and Cartesian form.

- Watch Video Solution

9. There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than 1 defective item.

- Watch Video Solution

Part E

1. Prove that $\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x$ when $f(2 a-x)=f(x)$ and hence evaluate $\int_{0}^{\pi}|\cos x| d x$.

- Watch Video Solution

2. Minimize $Z=3 x+2 y$, subject to constraints are $x+2 y \leq 10,3 x+y \leq 15, \quad$ and $x, y \geq 0$.

- Watch Video Solution

3. Find the relationship between a and b so that the function defined by $f(x)=\left\{\begin{array}{lll}a x+1 & \text { if } & x \leq 3 \\ b x+3 & \text { if } & x>3\end{array}\right.$ is continuous at $\mathrm{x}=3$.
