© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA

ENGLISH)

MODEL QUESTION PAPER 2

Part A

1. Give an example of a relation which is symmetric but neither reflexive nor transitive.
2. Find the principal value of the following: $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$

- Watch Video Solution

3. Construct a 2×2 matrix $A=\left|a_{i j}\right|$ whose elements are given by $a_{i j}=2 i+j$.

D Watch Video Solution

4. If $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$, find $|2 \mathrm{~A}|$.

D Watch Video Solution

5. If $y=e^{3 \log x}$, then show that $\frac{d y}{d x}=3 x^{2}$
6. Find the antiderivative of $x^{2}\left(1-\frac{1}{x^{2}}\right)$ with respect to x .

- Watch Video Solution

7. Define feasible region.

- Watch Video Solution

8. Find unit vector in the direction of vector $\hat{i}+\hat{j}+2 \hat{k}$

- Watch Video Solution

9. Find the direction ratio of the line $\frac{x-1}{2}=3 y=\frac{2 z+3}{4}$
10. If $\mathrm{P}(\mathrm{E})=0.6, \mathrm{P}(\mathrm{F})=0.3 P(E \cap F)=0.2$ then find $P(F / E)$.

- Watch Video Solution

Part B

1. Define binary operation on a set. Verify whether the operation

* defined on Z by a* $b=a b+1$ is binary or not

D Watch Video Solution

2. Write $\cot ^{-1}\left(\frac{1}{\sqrt{x^{2}-1}}\right), x>1$, in the simplest form.
3. find the equation of line joining $(1,2)$ and $(3,6)$ using determinants

D Watch Video Solution

4. Prove the following:
$\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \sin ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$

D Watch Video Solution

5. $y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right), \frac{1}{\sqrt{3}}, x, \frac{1}{\sqrt{3}}$.
6. Find $\frac{d y}{d x}$ if $\sin ^{2} x+\cos ^{2} y=k$, where k is constant.

D Watch Video Solution

7. If the radius of a sphere is measured as 7 m with an error of 0.02 m , then find the approximate error in calculating its volume.

- Watch Video Solution

8. Evaluate: $\int \frac{\cos 2 x}{(\sin x+\cos x)^{2}} d x$

D Watch Video Solution

9. Evaluate : $\int \tan ^{-1} x d x$

- Watch Video Solution

10. Find the projection of the vector $\hat{i}+3 \hat{j}-7 \hat{k}$ on the vector $7 \hat{i}+\hat{j}+8 \hat{k}$

D Watch Video Solution

11. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $b=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

12. Find the distance of a point $(2,5,-7)$ from the plane
$\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$
13. Find the order and the degree of the differential equation
$\frac{d^{3} y}{d x^{2}}+\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$

D Watch Video Solution

14. Given that the event A and B are such that $P(A)=$ $\frac{1}{2}, P(A \cap B)=\frac{3}{7}$ and $P(B)=K$ find k if A and B are independent.

D Watch Video Solution

Part C

1. Show that the relation R in the set of all integers Z defined by $R\{(a, b): 2$ divides $a-b\}$ is an equivalence relation.

- Watch Video Solution

2. Simplify: $\tan ^{-1}\left[\frac{2 \cos x-3 \sin x}{3 \cos x+2 \sin x}\right], \frac{2}{3} \tan x>-1$

- Watch Video Solution

3. Express matrix $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$
as the sum a symmetric and skew symmetric matrix.

- Watch Video Solution

4. If a function $f(x)$ is differentiable at $\mathrm{x}=\mathrm{c}$ prove that it is continuous at $\mathrm{x}=\mathrm{c}$.

- Watch Video Solution

5. Verify Rolle's theorem for the function $f(x)=x^{2}-4 x-3$, in the interval [1,4].

- Watch Video Solution

6. Find the equation of tangent to the curve given by $x=a \sin ^{3} t, y=b \cos ^{3} t$ a point where $t=\frac{\pi}{2}$

- Watch Video Solution

7. Evaluate : $\int \frac{x+2}{2 x^{2}+6 x+5} d x$

D Watch Video Solution

8. Evaluate : $\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x$

- Watch Video Solution

9. Find the area hounded by parabola $y^{2}=4 x$ and the line $y=2 x$

D Watch Video Solution

10. Three vectors \bar{a}, \bar{b} and \bar{c} satisfy the condition
$\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
evaluate
$\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ if $|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$

- Watch Video Solution

11. Find the shortest distance betweenn the lines.
$\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$
$\vec{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$.

(D) Watch Video Solution

12. Form the differential equation of circles touching the x-axis at origin:

- Watch Video Solution

13. An insurance company insured 2000 scooter drivers, 4000
car drivers and 6000 truck drivers. The probability of an accident is $0.01,0.03$ and 0.15 respectively. One of the insured person meets with an accident. What is the probability that he is a cooter driver?

D Watch Video Solution

Part D

1. Let $f: N \rightarrow R$ be defined by $f(x)=4 x^{2}+12 x+15$, show that $f: N \rightarrow S$, where S is the range of f , is invertible. Also find the inverse.
2. Verify $(B+C) A=B C+C A$, if $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{rr}3 & 8 \\ 11 & 21\end{array}\right]$ and $C=\left[\begin{array}{ll}7 & 13 \\ 5 & 19\end{array}\right]$

- Watch Video Solution

3. Solve the following system of equations by matrix method.
$x+y+3 z=10, x-y-z=-2,2 x+3 y+4 z=4$

D Watch Video Solution

$$
\begin{aligned}
& \text { 4. If } \quad y=A e^{m x}+B e^{n x}, \quad \text { prove that } \\
& \frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0 .
\end{aligned}
$$

5. A ladder 5 m long is leaning against a well. The bottom of the ladder is pulled along the ground, away from the well, at the rate of $2 \mathrm{~m} / \mathrm{s}$. How fat is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

D Watch Video Solution

6. Find the integral of $\frac{1}{\sqrt{x^{2}-a^{2}}}$ with respect to x and hence evalute $\int \frac{1}{\sqrt{x^{2}-2 x}} d x$

- Watch Video Solution

7. Using integration, find the area bounded by the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$
8. Derive the equation of a line in space passing through a given pont and parallel to a given vector in both vector and Cartesian form.

- Watch Video Solution

9. Solve the differential equation $x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$.

- Watch Video Solution

10. A pair of dice is thrown 4 times. If getting a doublet is considered a success find the probability of 2 success.
11. One king of cake requires 200 g of flour and 25 g of fat another kind of cake requires 100 g of flour and 50 g of fat . Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes.

- Watch Video Solution

2. Prove that $\int_{-a}^{a} d x=\left\{\begin{array}{ll}2 \int_{0}^{a} f(x) d x & \text { if } f(x) \text { is even } \\ 0 & \text { if } f(x) \text { is odd }\end{array}\right.$ and hence evaluate
(d) $\int_{-\pi / 2}^{\pi / 2} \tan ^{9} x d x$.
3. Prove that

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|
$$

- Watch Video Solution

