

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA ENGLISH)

SUPER MODEL QUESTION PAPER FOR PRACTICE

Part A

1. The operation * defined a * b = a. Is * a binary operation on z.

2. Simplify the following:

 $an^{-1}\sqrt{3} - \sec^{-1}(-2)$

1. Define a transitive relation.

2. Prove the following:

$$\sin^{-1}\Bigl(2x\sqrt{1-x^2}\Bigr) = 2\sin^{-1}x, \; -rac{1}{\sqrt{2}} \leq x \leq rac{1}{\sqrt{2}}$$

Watch Video Solution

3. Simplify the following:

$$\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$$

7. If the radius of a sphere is measured as 9 cm. With an error, 0.03 cm.,

then find the approximate error in calculating its volume.

8. Evaluate
$$: \int \frac{1}{\cos^2 x (1 - \tan x)^2} dx.$$

Watch Video Solution
9. Evaluate $: \int \frac{e^x (x - 1)}{x^2} dx.$
Watch Video Solution

10. Find the order and degree of the differential equation, $xy, \frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} = 0.$ **Vatch Video Solution**

11. Find the unit vector in the direction of thd sum of the vectors $2\hat{i} + 2\hat{j} + 5\hat{k}$ and $2\hat{i} + \hat{j} - 3\hat{k}$.

2. Verify whether the binary operation * on Q, the set of all rationals,

defined as a*b=ab+1 is commutative or associative.

5. If
$$y = x^x - 2^{\sin x}$$
 find $\frac{dy}{dx}$.

6. If
$$y = \tan^{-1}\left(\frac{1+\sin x}{\cos x}\right)$$
 shoe that $\frac{dy}{dx} = \frac{1}{2}$.

- 7. Find the intervals in which the functions f given by $f(x) = 4x^3 6x^2 72x + 30$ is
- (a) strictly increasing (b) strictly decreasing.

Watch Video Solution

8. Find the intervals in which the functions f given by
$$f(x) = 4x^3 - 6x^2 - 72x + 30$$
 is

(a) strictly increasing (b) strictly decreasing.

9. Evaluate :
$$\int_{-5}^{5} |x-2| dx$$
.

10. Evaluate:
$$\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$$
.

12. From the differential equation representing the family of parabolas

having vertex at origion and axis along possitive direction of x-axis.

Watch Video Solution	
13. Find the area of a triangle having the points $A(1,1,1)B(1,2,3)$ and	

C(2,3,1) as its vertices.

Watch Video Solution

14. Prove that
$$\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} = 2 \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \end{bmatrix}$$

Watch Video Solution

15. Find the vector and cartesian equations of the plane that passes through the points (1,4,6) and the normal vector to the plane is $\hat{i} - 2\hat{j} + \hat{k}$.

1.
$$f\colon R o R$$
 be defined as $f(x)=4x+5\,orall x\in R$ show that f is invertible and find $f^{-1}.$

2. If
$$A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$$

calculate AC, BC and (A+B)C.

5. A man of height 2 metres walks at a uniform speed of 5 km/h away from a lamp post which is 6 metres high. Find the rate at which the length of his shadow increases.

6. Find the integral of
$$\frac{1}{\sqrt{x^2 - a^2}}$$
 with respect to x and hence evaluate $\frac{1}{\sqrt{x^2 + 4x - 10}} dx$.
Watch Video Solution

7. Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and inside of the parabola $y^2 = 4x$.

Watch Video Solution

8. Solve the differential equation
$$x\log x \frac{dy}{dx} + y = \frac{2}{x}\log x.$$

9. Derive the equation of a line space passing through two given points

both in vector and cartesian form.

2. Prove that
$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1 - x^2).$$

3. There are two types of fertilizers F_1 and F_2 consists of 10% nitrogen and 6% phosphoric acid and F_2 consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds that he needs atleast 14 kg of nitrogen and 14 kg of phosphoric acid for his crop. If F_1 costs Rs. 6/kg and F_2 costs Rs. 5 kg. Determine how much of each type fertilizer should be used so theat nutrient requirements are met at a minimum cost. What is the minimum cost? Also show graphically.

4. Find the Continuity of function f(x) .

$$f(x) = egin{cases} |x|+3 & ext{if} & x \leq -3 \ -2x & ext{if} & -3 < x < 3 \ 6x+2 & ext{if} & x \geq 3 \end{cases}$$