©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS

(KANNADA ENGLISH)

SUPER MODEL QUESTIONS PAPER (WITH
 ANSWERS)

Part A

1. Define a transitive relation.
2. Write the set of the value of x for which $2 \tan ^{-1} x=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}$ holds.

D Watch Video Solution

3. Construct a 2×3 whose elements are given by

$$
a_{i j}=|i-j| .
$$

4. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then show that $|2 \mathrm{~A}|=4|\mathrm{~A}|$

- Watch Video Solution

5. $\cos (\sin x)$

D Watch Video Solution
6. Find $\int \cos 3 x d x$

D Watch Video Solution
7. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$

D Watch Video Solution
8. Find the intercepts cut-off by the plate $2 x+y-z=5$.

D Watch Video Solution
9. Define feasible region.

D Watch Video Solution
10. Given that E and F are events such that $\mathrm{P}(\mathrm{E})=0.6, \quad \mathrm{P}(\mathrm{F})=0.3 \quad$ and $\quad P(E \cap F)=0.2, \quad$ find $P(E / F)$ and $P(E / F)$.

D Watch Video Solution

Part B

1. Show that the function $f: R \rightarrow R$ defined by
$f(x)=x^{2} \forall x \in R \quad$ is neither injective nor subjective.
2. Evaluate $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$

(Watch Video Solution

3. Simplify the following:

If $\sin \left\{\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right\}=1$ find x

(D) Watch Video Solution

4. Find area of the triangle with vertices (2,7),(1,1),
$(10,8)$.
5. Find the Continuity of function $f(x)$.
$f(x)=\left\{\begin{array}{lll}|x|+3 & \text { if } & x \leq-3 \\ -2 x & \text { if } & -3<x<3 \\ 6 x+2 & \text { if } & x \geq 3\end{array}\right.$

- Watch Video Solution

6. Is the function defined by $x^{2}-\sin x+5$ continous at $x=\pi$?

D Watch Video Solution

7. $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$.

D Watch Video Solution
8. $\int_{-1}^{1}(x+1) \mathrm{dx}$.

D Watch Video Solution
9. $\int_{2}^{3} \frac{1}{x} \mathrm{dx}$

- Watch Video Solution

10. $y=\sqrt{1+x^{2}}$ and $y^{\prime}=\frac{x y}{1+x^{2}}$

D Watch Video Solution

11. If the position vectors of the points A and B respectively are $i+2 j-3 k$ and $j-k$ find the direction cosines of $A B$

D Watch Video Solution

12. Find unit vector in the direction of vector $\hat{i}+\hat{j}+2 \hat{k}$
13. Find the distance of the point $(2,3,-5)$ from the plane $r .(i+2 j-2 k)=9$.

- Watch Video Solution

14. A die is thrown. If E is the event 'the number appearing is a multiple of 3 ' and F is the event 'the number appearing is even', then find whether E and F are independent?
15. Show that the relation R in the set
$A=\{x \in z, 0 \leq x \leq 12\} \quad$ given by
$R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence relation.

(D) Watch Video Solution

2. Show that $\sin ^{-1} \frac{3}{5}-\sin ^{-1} \frac{8}{17}=\cos ^{-1} \frac{84}{85}$
3. Find the value of a, b, c and d from the equation:
$\left[\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 0 & 13\end{array}\right]$
D Watch Video Solution

$$
\text { 4. } y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1
$$

D Watch Video Solution

5. $x=\sin t, y=\cos 2 t$.
6. Find the point on the curve $y=x^{2}-11 x+5$ at which the tangent is $\mathrm{y}=\mathrm{x}-11$.

D Watch Video Solution

7. $\int \frac{d x}{\sqrt{1+4 x^{2}}}$.

D Watch Video Solution
8. $\int \frac{3 x}{1+2 x^{4}} d x$

D Watch Video Solution
9. Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

D Watch Video Solution

10. Form the differential equation of the family of circles touching the y-axis at origin.

D Watch Video Solution

11. Find the area of the triangle with vertices
$A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.

D Watch Video Solution

12. Find the area of the parallelogram whose adjacent sides are determined by the vectors $a=\hat{i}-\hat{j}+3 \hat{k}$ and $b=2 \hat{i}-7 \hat{j}+\hat{k}$.

- Watch Video Solution

13. Find the vector and the Cartesian equation of the line that passes through the points $(3,-2,-5)$, $(3,-2,6)$.
14. Consider the experiment of tossing two fair coins simultaneously, find the probability that both are head given that at least one of them is a head.

D Watch Video Solution

Part D

1. If R_{+}is the set of all non-negative real numbers
prove that the $f: R_{+} \rightarrow(-5, \infty)$ defined by
$f(x)=9 x^{2}+6 x-5$ is invertible. 39. Write also, $f^{-1}(x)$.

D Watch Video Solution

2.

$A=\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right]$ and $C=\left[\begin{array}{cc}2 & -2 \\ 3 & 0\end{array}\right]$
verify that $A(B C)=(A B) C$.

D Watch Video Solution

3. The cost of 4 kg onion, 3 kg wheat and 2 kg rise
in Rs. 60 . The cost of 2 kg onion, 4 kg wheat and 6
kg rice in Rs.90. The cost of 6 kg onion, 2 kg wheat and 3 kg rice is Rs.70. Find cost of each item per kg by matrix method.

D Watch Video Solution

4. If $y=A e^{m x}+B e^{n x}$, prove that
$\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0$.

D Watch Video Solution

5. The length x of rectangle is decreasing at the rate of $5 \mathrm{~cm} /$ minute and width y is increasing at
the rate of $4 \mathrm{~cm} /$ minute. When $x=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rate of change of (i) the perimeter and (ii) the Area of the rectangle.

D Watch Video Solution

6. Find the integral of $\sqrt{x^{2}+a^{2}}$ w.r.t. x and hence evaluate $\int \sqrt{x^{2}+4 x+6}, \mathrm{dx}$.

D Watch Video Solution

7. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.
8. Solve $\frac{d y}{d x}+3 y=e^{-2 x}$.

(-) Watch Video Solution

9. Derive the equation of a plane in normal form both in the vector and Cartesian form .

D Watch Video Solution
10. From a lot of 30 bulbs which include 6 detective, a sample of 4 balls is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

- Watch Video Solution

Part E

1. (a) Prove that $\int_{0}^{2 x} f(x) d x=2 \int_{0}^{2 x} f(x) d x$
when $f(2 a-x)=f(x)$ and hence evaluate
$\int_{0}^{\pi}|\cos x| d x$.
(b) Prove that $\left|\begin{array}{lll}-a^{2} & a b & a c \\ b c & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$.
