©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA
 ENGLISH)

SUPPLEMENTARY EXAM QUESTION PAPER JUNE 2018

Part A

1. The relation R on set $A=\{1,2,3\}$ is defined as $R\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is not transitivie. Why?

- Watch Video Solution

2. Write the range of $y=\cos ^{-1} x$.
3. If a matrix has 18 elements what are the possible orders it can have?

- Watch Video Solution

4. Find the values of x for which $\left|\begin{array}{ll}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{ll}6 & 2 \\ 18 & 6\end{array}\right|$

- Watch Video Solution

5. $\sin (a x+b)$.

- Watch Video Solution

6. $\int \sec \mathrm{x}(\sec x+\tan x) d x$.

- Watch Video Solution

7. Define negative of a vector.

- Watch Video Solution

8. The Cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$, write its vector form.

- Watch Video Solution

9. Define optimal solution in linear programming problem.

Watch Video Solution
10. Find $P(A / B), \quad$ if $P(B)=0.5$ and $P(A \cap B)=0.32$

- Watch Video Solution

1. Find the identify element for the binary operation *, defined on the set of Q of rational number, by $a \cdot b=\frac{a b}{4}$

- Watch Video Solution

2. Write $\tan ^{-1}\left(\frac{\sqrt{1-\cos x}}{\sqrt{1+\cos x}}\right), 0<x<\pi$ in the simplest form.

- Watch Video Solution

3. Find the value of $\cos ^{-1}\left(\cdot \cos \frac{13 \pi}{6}\right)$

- Watch Video Solution

4. If the area of the triangle with vertices $(2,-6),(5,4)$ and $(K, 4)$ is 35 sq . units, then find the values of K, using determinants.
5. Find $\frac{d y}{d x}, \quad$ if $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right), 0<x<\frac{1}{\sqrt{2}}$

- Watch Video Solution

6. Differentiate $(\sin x)^{\cos \mathrm{x}}$ with respect to x .

- Watch Video Solution

7. If the radius of a sphere is measured as 7 m with an error of 0.02 m , then find the approximate error in calculating its volume.

- Watch Video Solution

8. Evaluate $\int \cos 6 x \sqrt{1+\sin 6 x} d x$.
9. Integrate $\frac{x e^{x}}{(1+x)^{2}}$ with respect to x .

- Watch Video Solution

10. Find the order and degree, it defined of the differential equation $\frac{d^{4} y}{d x^{4}}+\frac{\sin \left(d^{3} y\right)}{d x^{3}}=0$

- Watch Video Solution

11. Find the projection of the vector
$\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ on the vector $\vec{b}=2 \hat{i}+3 \hat{j}+2 \hat{k}$.

- Watch Video Solution

12. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$
13. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3 `$

- Watch Video Solution

14. The random variable X has a probability distribution $P(X)$ of the following form, where K is some number $P(X)= \begin{cases}K & \text { if } \mathrm{x}=0 \\ 2 K & \text { if } \mathrm{x}=1 \\ 3 K & \text { if } \mathrm{x}=2 \\ 0 & \text { otherwise }\end{cases}$
(a) Determine the value of K .
(b) Find $P(X<2)$.

- Watch Video Solution

Part C

1. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by by $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ and $g(x)=3 x^{2}$, then shown that gof $\neq f o g$.

- Watch Video Solution

2. Solve $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

- Watch Video Solution

3. find the inverse of the matrix $A=\left[\begin{array}{ll}3 & -1 \\ -4 & 2\end{array}\right]$

- Watch Video Solution

4. If $x=a(\theta-\sin \theta)$ and $y=a(1+\cos \theta)$, then proe that $\frac{d y}{d x}=-\cot \left(\frac{\theta}{2}\right)$.
5. Verify Rolle's theorem for the function $f(x)=x^{2}-4 x-3$, in the interval [1,4].

- Watch Video Solution

6. Find two positive number whose sum is 15 and the sum of whose squares is minium.

- Watch Video Solution

7. Evaluate: $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$

- Watch Video Solution

8. Integrate $\frac{d x}{x\left(x^{2}+1\right)}$ with respect to x .
9. Find the area of the parabola $y^{2}=4 a x$ bounded by its latus rectum.

- Watch Video Solution

10. Form the differential equation representing the family of curves $y=a \sin (x+b)$ where a,b are arbitrary constant.

- Watch Video Solution

11. Find a unit vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}$

- Watch Video Solution

12. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$
13. Find the equation of the plane through the intersection of the planes. $3 x-y+2 z=0$ and $x+y+z-2=0$ and the point $(2,2,1)$

- Watch Video Solution

14. A man is known to speak truth 4 out 5 times. He tossed a coin and reports that is head. Find the probability that it is actually head.

- Watch Video Solution

Part D

1. Let $R+$ be the set of all non-negative real numbers. Show that the function $f: R+\rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$ is invertible and write the inverse of f .
2. If $A=\left[\begin{array}{l}1 \\ -4 \\ 3\end{array}\right], B=[-1,2,1]$, verify that (AB)'=B'A'

- Watch Video Solution

3. Solve the following system of linear equations by matrix method $4 x+3 y+2 z=60,2 x+4 y+6 z=90,6 x+2 y+3 z=70$

- Watch Video Solution

4. If $y=A e^{m x}+B e^{n x}$, prove that $\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0$.

- Watch Video Solution

5. A particle move along the curve $6 y=x^{3}+2$. Find the points on the curve at which y-coordinate is changing 8 times as fast as the x coordinates.

Watch Video Solution

6. Find the integral of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ with respect to x and hence find $\int \frac{1}{\sqrt{7-6 x-x^{2}} d x}$

- Watch Video Solution

7. Find the area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1,(a>b)$ by the method of integration and hence find the area of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{19}=1$.

- Watch Video Solution

8. Find the general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2},(x \neq 0)$

- Watch Video Solution

9. Derive the equation of a line in space passing through two given plots both in vector and Cartesian form.

Watch Video Solution

10. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning and prize is $\frac{1}{100}$. What is the probability that he will win a prize.
(a) at least once
(b) exactly once

- Watch Video Solution

Part E

1. Prove that $\int_{-a}^{a} d x=\left\{\begin{array}{ll}2 \int_{0}^{a} f(x) d x & \text { if } f(x) \text { is even } \\ 0 & \text { if } f(x) \text { is odd }\end{array}\right.$ and hence evaluate
(b) $\int_{-\pi / 2}^{\pi / 2} \sin ^{7} x d x$.

- Watch Video Solution

2. Find the value of K , if $f(x)=\left\{\begin{array}{lll}K x^{2} & \text { if } & x \leq 2 \\ 3 & \text { if } & x>2\end{array}\right.$

- Watch Video Solution

3. Solve the following problem graphically:

Maximum and minimize

Z=10500x+9000y
Subject to the constraints
$x+y \leq 50$
$2 x+y \leq 80$
$x \geq 0, y \geq 0$

- Watch Video Solution

4. Prove that $\left|\begin{array}{lll}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$
