

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA ENGLISH)

SUPPLEMENTARY EXAM QUESTION PAPER (WITH ANSWERS) JUNE 2016

Part A

1. An operation * on z^+ (the set of all non-negative integers) is defined as $a\cdot b=|\ a-b|,\ \forall q,b\in z^+.$ Is * a binary operation on z^+ ?

5. If
$$\tan(2x+3)$$
, find $\frac{dy}{dx}$.

6. Find :
$$\int (2x^2 + e^x) dx$$
.

7. Find unit vector in which the direction of vector $ec{a}=2\hat{i}+3\hat{j}+\hat{k}.$

Watch Video Solution

8. Write the direction cosines of z-axis.

9. Define optimal solution in linear programming problem.

10.

$$P(A) = rac{7}{13}, P(B) = rac{9}{13} ext{ and } P(A \cap B) = rac{4}{13}, ext{ find } P(A/B)$$

lf

Watch Video Solution

Part B

1. Find gof and fog if
$$f\colon R o R$$
 and $g\colon R o R$ are given by $f(x)=\cos x$ and $g(x)=3x^2$

Watch Video Solution

2. Prove the following:

$$\sin^{-1}ig(3x-4x^3ig)=3\sin^{-1}x,xarepsilonigg[-rac{1}{2},rac{1}{2}igg]$$

3. Evaluate
$$\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$$

4. Find the area of the triangle with vertices, (3,8), (-4,2) and (5,1)

using determinants.

Watch Video Solution

5.
$$y = \cos^{-1} \left(rac{1-x^2}{1+x^2}
ight), 0 < x < 1.$$

6. Find
$$rac{dy}{dx}, \quad ext{if} \quad y=x^{\sin x}, \, x>0.$$

7. Find the interval in which the function f given by $f(x) = 2x^2 - 3x$ is strictly increasing.

Watch Video Solution

$$\mathbf{8.} \int x^2 \log x dx.$$

Watch Video Solution

9. Evaluate:
$$\int_0^1 rac{dx}{\sqrt{1-x^2}}$$

10. Find the order and degree of the differential equation

$$d^3rac{y}{dx^3}+2d^2rac{y}{dx^2}+rac{dy}{dx}=0$$

Watch Video Solution

12. Find the area of the parallelogram whose adjacent sides are

determined by the vectors $\overrightarrow{a} = \hat{i} - \hat{j} + 3\hat{k} ext{ and } \overrightarrow{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

13. Show that the lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{x}{3}$ are perpendicular

to each other.

Watch Video Solution

14. Find the probability distribution of

number of heads in two tosses of a coin .

1. Show that the relation R in the set A={1,2,3,4,5} given by R=

{(a,b) : |a-b| is even}, is an equivalence relation.

3. By using elementary transformations, find the inverse of the

 $\mathsf{matrix}\,A = \left[\begin{array}{cc} 1 & 3 \\ 2 & 7 \end{array} \right]$

4. If $x = a(\theta - \sin \theta)$ and $y = a(1 + \cos \theta)$, then prove that $\frac{dy}{dx} = -\cot\left(\frac{\theta}{2}\right)$.

5. Verify Mean Value Theorem for the function $f(x)=x^2$ in the

interval [2,4].

6. Using differentials, find the approximate value of $(25)^{\frac{1}{3}}$.

7. Evaluate :
$$\int e^{x} \left(\frac{1 + \sin x}{1 + \cos x} \right) dx$$

8. Evaluate:
$$\int rac{x}{(x+1)(x+2)} dx$$

9. Find the area of the region bounded by the curve $y^2 = 9x, x = 2, x = 4$ and the x-axis in the first quadrant.

Watch Video Solution

10. Form the differential equation representing family of curve $\frac{x}{a} + \frac{y}{b}$ =1 where a and b are arbitrary constants .

11. Prove that
$$\left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right]$$
.
Watch Video Solution
12. Show that the position vector of the point P, which divides
the line joining the points A and B having position vectors
 \overrightarrow{a} and \overrightarrow{b} internally in the ratio $m:n$ is $\frac{m\overrightarrow{b} + n\overrightarrow{a}}{m+n}$

13. Find the vector equation of the line, passing through the points (-1,0,2) and (3,4,6)

14. A die is tossed thrice. Find the probability of getting an odd

number tieast once.

2. If

$$A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix} \text{ and } C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$$

Calculate AC, BC and (A+B)C. Also verify that (A+B)C=AC+BC.

3. Solve the following system of linear equations by matrix method:

3x - 2y + 3z + 8, 2x + y - z = 1, 4x - 3y + 2z = 4

Watch Video Solution

4. If y=3 cos(log x)+4 sin(log x), show that $x^2y_2 + xy_1 + y = 0$

5. A ladder 5 m long is leaning against a well. The bottom of the ladder is pulled along the ground, away from the well, at the

rate of 2 m/s. How fat is its height on the wall decreasing when

the foot of the ladder is 4m away from the wall?

$$rac{x^2}{16} + rac{y^2}{19} = 1.$$

8. Find the general solution of the differential equation $xrac{dy}{dx}+2y=x^2,\,(x
eq 0)$

9. Derive the equation of a plane in normal form both in the vector and Cartesian form .

10. If a fair coin is tossed 10 times, find the probability of.

(i) exactly six heads and (ii) atleast six heads.

Part E

1. Prove that
$$\int_0^a f(x) dx = \int_0^a f(a-x) dx$$
 and hence evaluate

the following:

(c)
$$\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

Watch Video Solution

$$\left| egin{array}{cccccc} a-b-c & 2a & 2a \ 2b & b-c-a & 2b \ 2c & 2c & c-a-b \end{array}
ight| = (a+b+c)^3.$$