© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA

ENGLISH)

SUPPLEMENTARY EXAM QUESTION PAPER (WITH ANSWERS) JUNE 2016

Part A

1. An operation * on z^{+}(the set of all non-negative integers) is defined as $a \cdot b=|a-b|, \forall q, b \in z^{+}$.ls * a binary operation on z^{+}?

D Watch Video Solution
2. Write the domain of $f(x)=\sin ^{-1} x$

D Watch Video Solution

3. Define a scalar matrix.

- Watch Video Solution

4. Find the value of x for which $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$

- Watch Video Solution

5. If $\tan (2 x+3)$, find $\frac{d y}{d x}$.
6. Find: $\int\left(2 x^{2}+e^{x}\right) \mathrm{dx}$.

D Watch Video Solution

7. Find unit vector in which the direction of vector $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}$.

- Watch Video Solution

8. Write the direction cosines of z-axis.

- Watch Video Solution

9. Define optimal solution in linear programming problem.
10.

$P(A)=\frac{7}{13}, P(B)=\frac{9}{13}$ and $P(A \cap B)=\frac{4}{13}, \quad$ find $P(A / B)$

- Watch Video Solution

Part B

1. Find gof and fog if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$

- Watch Video Solution

2. Prove the following:
$\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \sin ^{-1} x, x \varepsilon\left[-\frac{1}{2}, \frac{1}{2}\right]$
3. Evaluate $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$

- Watch Video Solution

4. Find the area of the triangle with vertices, (3,8), (-4,2) and (5,1) using determinants.

- Watch Video Solution

5. $y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1$.

- Watch Video Solution

6. Find $\frac{d y}{d x}, \quad$ if $y=x^{\sin x}, x>0$.

- Watch Video Solution

7. Find the interval in which the function f given by $f(x)=2 x^{2}-3 x$ is strictly increasing.

- Watch Video Solution

8. $\int x^{2} \log x d x$.

- Watch Video Solution

9. Evaluate: $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
10. Find the order and degree of the differential equation $d^{3} \frac{y}{d x^{3}}+2 d^{2} \frac{y}{d x^{2}}+\frac{d y}{d x}=0$

- Watch Video Solution

11. If two vectors \vec{a} and \vec{b} such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$, find $|\vec{a}-\vec{b}|$

- Watch Video Solution

12. Find the area of the parallelogram whose adjacent sides are determined by the vectors
$\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

$$
\begin{aligned}
& \text { 13. } \begin{array}{c}
\text { Show } \\
\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \text { and } \frac{x}{1}=\frac{y}{2}=\frac{x}{3} \text { are perpendicular }
\end{array} \text { the }=\text { lines }
\end{aligned}
$$ to each other.

D Watch Video Solution

14. Find the probability distribution of number of heads in two tosses of a coin .

- Watch Video Solution

Part C

1. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=$ $\{(a, b):|a-b|$ is even $\}$, is an equivalence relation.

- Watch Video Solution

2. Solve $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

- Watch Video Solution

3. By using elementary transformations, find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$
4. If $x=a(\theta-\sin \theta)$ and $y=a(1+\cos \theta)$, then proe that $\frac{d y}{d x}=-\cot \left(\frac{\theta}{2}\right)$.

- Watch Video Solution

5. Verify Mean Value Theorem for the function $f(x)=x^{2}$ in the interval [2,4].

- Watch Video Solution

6. Using differentials, find the approximate value of $(25)^{\frac{1}{3}}$.

D Watch Video Solution

7. Evaluate : $\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x$

- Watch Video Solution

8. Evaluate: $\int \frac{x}{(x+1)(x+2)} d x$

- Watch Video Solution

9. Find the area of the region bounded by the curve $y^{2}=9 x, x=2, x=4$ and the x -axis in the first quadrant.

- Watch Video Solution

10. Form the differential equation representing family of curve $\frac{x}{a}+\frac{y}{b}=1$ where a and b are arbitrary constants .
11. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.

- Watch Video Solution

12. Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \vec{a} and \vec{b} internally in the ratio $m: n$ is $\frac{m \vec{b}+n \vec{a}}{m+n}$

D Watch Video Solution

13. Find the vector equation of the line, passing through the points (-1,0,2) and (3,4,6)
14. A die is tossed thrice. Find the probability of getting an odd number tieast once.

- Watch Video Solution

Part D

1. Let $\mathrm{R}+$ be the set of all non-negative real numbers. Show that the function $f: R+\rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$ is invertible and write the inverse of f.

- Watch Video Solution

2.

$$
A=\left[\begin{array}{lll}
0 & 6 & 7 \\
-6 & 0 & 8 \\
7 & -8 & 0
\end{array}\right], B=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 2 \\
1 & 2 & 0
\end{array}\right] \text { and } C=\left[\begin{array}{l}
2 \\
-2 \\
3
\end{array}\right]
$$

Calculate $A C, B C$ and $(A+B) C$. Also verify that $(A+B) C=A C+B C$.

D Watch Video Solution

3. Solve the following system of linear equations by matrix method:
$3 x-2 y+3 z+8,2 x+y-z=1,4 x-3 y+2 z=4$

- Watch Video Solution

4. If $\mathrm{y}=3 \cos (\log \mathrm{x})+4 \sin (\log \mathrm{x})$, show that $x^{2} y_{2}+x y_{1}+y=0$

- Watch Video Solution

5. A ladder 5 m long is leaning against a well. The bottom of the ladder is pulled along the ground, away from the well, at the
rate of $2 \mathrm{~m} / \mathrm{s}$. How fat is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

- Watch Video Solution

6. Find the integral of $\sqrt{a^{2}-x^{2}}$ with respect to x and hence evaluate $\int \sqrt{5-x^{2}+2 x} \mathrm{dx}$.

D Watch Video Solution

7. Find the area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1,(a>b)$ by the method of integration and hence find the area of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{19}=1$.
8. Find the general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2},(x \neq 0)$

- Watch Video Solution

9. Derive the equation of a plane in normal form both in the vector and Cartesian form .

- Watch Video Solution

10. If a fair coin is tossed 10 times, find the probability of.
(i) exactly six heads and (ii) atleast six heads.
11. Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ and hence evaluate the following:
(c) $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$

- Watch Video Solution

2. $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$.
