

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA ENGLISH)

SUPPLEMENTARY EXAM QUESTION PAPER 2017

Part A

1. Find the identify element for the binary operation *, defined on the

set of Q of rational number, by $a \cdot b = rac{ab}{4}$

Watch Video Solution

2. Write the values of x for which $\tan^{-1} \frac{1}{x} = \cot^{-1} x$, holds.

3. Construct a 2 imes 2 matrix, $A=ig[a_{ij}ig]$, whose elements are given by $a_{ij}=rac{i}{j}$

5. Find
$$rac{dy}{dx}$$
 if y $=$ sin (x^2)

Watch Video Solution

6. Find
$$\int \cos 3x dx$$

1. Show that if $f: A \to B$ and $g: B \to C$ are onto, then $gof A \to C$ is also onto.

Watch Video Solution

2. Prove the following:

$$2 an^{-1}x = \cos^{-1}igg(rac{1-x^2}{1+x^2}igg), x \ge 0$$

Watch Video Solution

3. Simplify the following:

$$\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$$

4. Using determinant method, find the area of the triangle whose vertices are (1,0),(6,0) and (4,3).

6. Find
$$rac{dy}{dx}$$
, if $2x+3y=\sin y$

Watch Video Solution

7. Find the point on the curve $rac{x^2}{4}+rac{y^2}{25}=1$ at which the tangents

are parallel to x-axis.

8. Evaluate:
$$\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$$
.
• Watch Video Solution
9. Evaluate: $\int \frac{x-3}{(x-1)^3} e^x dx$
• Watch Video Solution

10. Find the order and degree, it defined of the differential equation

$$rac{d^4y}{dx^4}+rac{\sinig(d^3yig)}{dx^3}=0$$

D Watch Video Solution

11. If
$$\overrightarrow{a}$$
 is a unit vector and $(\overrightarrow{x} - \overrightarrow{a})$. $(\overrightarrow{x} + \overrightarrow{a}) = 8$, then find $|\overrightarrow{x}|$.

12. Find the area of the parallelogram whose adjacent sides are given by the vectors $\overrightarrow{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $b = \hat{i} - \hat{j} + \hat{k}$.

14. If A and B are two adjacent events, then prove that the probability

of occurance of atleast one of A and B is given by $1 - P(A^{\,\prime})P(B^{\,\prime})$

1. Check whether the relation R defined in the set {1,2,3,4,5,6} as R{(a,b):

b=a+1)} is reflecxive or symmetric.

2. Solve
$$an^{-1} 2x + an^{-1} 3x = rac{\pi}{4}$$

Watch Video Solution

3. By using elementary transformations, find the inverse of $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$

Watch Video Solution

4. Find
$$\frac{dy}{dx}$$
, if $x = a \left(\cos t + \log \tan \frac{t}{2} \right), y = a \sin t$.

5. Verify Mean Value Theorem for the function $f(x) = x^2$ in the interval [2,4].

Watch Video Solution

7. Evaluate:
$$\int \frac{x}{(x+1)(x+2)} dx$$

Watch Video Solution

8. Evaluate
$$\int rac{x \cos^{-1} x}{\sqrt{1-x^2} dx}$$

9. Find the area bounded by the curve y=cos x between x=0- and

 $x = 2\pi$

Watch Video Solution

10. Find the equation of a curve passing through the point (-2,3), given

that slope of the tangent to the curve at any point (x,y) is $rac{2x}{y^2}$

11. Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \overrightarrow{a} and \overrightarrow{b} internally in the ratio m:n is $\frac{m\overrightarrow{b} + n\overrightarrow{a}}{m+n}$

12. Find x such that the four point A(3,2,1),B(4,x,5),C(4,2,-2) and D(6,5,-1)

are coplanar.

Watch Video Solution

13. Find the vector and cartesian equation of the plane which passe3s throught the points (5,2,-4) and perpendicular to the line with direction ratios 2,3,-1.

Watch Video Solution

14. A man is known to speak truth 3 out of 4 times. He throws a die and

reports that it is a six. Find the probability that it is actually a six.

1. Prove that the funciton $f \colon R \to R$ defined by f(x)=4x+3 is invertible

and find the inverse of f.

Watch Video Solution

2. If
$$A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$
 and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$

Calculate AC, BC and (A+B)C. Also verify that (A+B)C=AC+BC.

Watch Video Solution

3. Solve the following system of equations by matrix method.

x+y+z=6

y+3z=11

x-2y+z=0

4. If y=3 cos(log x)+4 sin(log x), show that $x^2y_2 + xy_1 + y = 0$

Watch Video Solution

5. Sand is pouring from a pipe at the rate of $12cm^3/s$. The falling sand forms a cone on the top of ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4cm?

Watch Video Solution

6. Find the integral of $\sqrt{a^2+x^2}$ with respect to x and hence evaluate

$$\int \sqrt{1+x^2} dx$$

7. Using the method of integration, find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x+y=2.

Watch Video Solution

8. Find the general solution of the differential equation $ydx - \left(x + 2y^2
ight)dy = 0$

Watch Video Solution

9. Derive the equation of a line in space passing through two given

plots both in vector and Cartesian form.

10. If a fair coin is tossed 10 times, find the probability of.

(i) exactly six heads and (ii) atleast six heads.

