

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA ENGLISH)

SUPPLEMENTARY EXAM QUESTION PAPER JULY 2015

1. Let* be a binary operation on the set of natural numbers given by a*b-L.C.M of a and b,find 5*7.

2. Evaluate
$$\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$$

3. Define a scalar matrix.

5. Find if
$$\frac{dy}{dx}$$
 if $y = \cos\left(\sqrt{x}\right)$.

8. Find the intercepts cut-off by the plane

$$2x + y - z = 5.$$

10. If
$$P(A) = 0.8, P(B) = 0.5$$
 and

 $P(B \mid A) = 0.4$, then find $P(A \cap B)$.

1. If $f\colon R o R$ is given by $f(x)=\left(3-x^3
ight)^{rac{1}{3}}$ then sind (fof)(x).

4. If the area of the triangle with vertices (-2, 0), (0, 4) and (0, k) is 4 square units, find the values of k u"sin"g determinants.

5. Find
$$\frac{dy}{dx}$$
 , if $y = \log(\log x)$.

7. Using differentials, find the approximate value of each of the following upto 3 place of decimal.

(ii) $\sqrt{49.5}$

8. Evaluate :
$$\int \frac{x^2}{1-x^6} dx$$

9. Evaluate :
$$\int e^x \left(\frac{1}{x} - \frac{1}{x^2} \right) dx.$$

10. Find the order and degree of the equation
$$\left(\frac{d^2y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$$

11. Find the projection of the vector

 $\hat{i}+3\hat{j}-7\hat{k}$ on the vector $7\hat{i}+\hat{j}+8\hat{k}$

12. Find the vector equation of the line, passing through the points (-1,0,2) and (3,4,6)Watch Video Solution

13. Find the probability distribution of number of tails in the simultaneous tosses of three coins .

1. Prove that the relation R in the set of integers Z defined by $R = \{(x,y) : x - y, is an integer) is an equivalence relation.$

3. Express $A = \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix}$ as sum of symmetric and skew symmetric matrix. Watch Video Solution 4. Find $rac{dy}{dx}, \hspace{1em} ext{if} \hspace{1em} x = a \Big(\cos t + \log an rac{t}{2} \Big), y = a \sin t$ Watch Video Solution

5. Verify Rolle's theorem for the function $f(x) = x^2 - 4x - 3$, in the interval [1,4].

6. Find two number whose sum is 24 and whose product is larger as possible.

7. Evaluate:
$$\int \!\! rac{x}{(x+1)(x+2)} dx$$

11. Find a unit vector perpendicular to each of
the vector
$$\left(\overrightarrow{a} + \overrightarrow{b}\right)$$
 and $\left(\overrightarrow{a} - \overrightarrow{b}\right)$,
where $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$

14. Bag I contains 3 red and 4 black balls. While Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from Bag II.

1. Prove that the funciton $f: R \to R$ defined by f(x)=4x+3 is invertible and find the inverse of f.

2. If
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix}$$

and $C = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ thern compute (A+B)

and (B-C). Also verify A+(B-C)=(A+B)-C.

3. Solve system of linear equations , using matrix method

2x + 3y + 3z = 5

 $x-2y+z=\,-\,4$

3x - y - 2z = 3

4. If
$$y=\left(an^{-1}x
ight)^2$$
 then show that $\left(x^2+1
ight)^2rac{d^2y}{dx^2}+2x\left(x^2+1
ight)rac{dy}{dx}=2$

5. Sand is pouring from a pipe at the rate of $12cm^3/s$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the base. How fast height of the sand cone increasing when the height is 4 cm?

6. Find the integral of $\sqrt{x^2 + a^2}$ w.r.t. x and

hence evaluate
$$\int \sqrt{x^2 + 4x + 6}$$
, dx.

Watch Video Solution

7. Find the area bounded by the curve

$$(x-1)^2+y^2=1 \ \ {
m and} \ \ x^2+y^2=1.$$

8. Find the general solution of the differential

equation

$$ig(x+3y^2ig)rac{dy}{dx}=y(y<0)$$
 .

9. Derive the equation of a plane perpendicular to a given vector and passing through a given point in both vector form and Cartesian form.

1. One king of cake requires 200 g of flour and 25 g of fat another kind of cake requires 100 g of flour and 50 g of fat . Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes.

2. Find the values of a and b such that the

function defined by

$$f(x) = egin{cases} 5 & ext{if} & x \leq 2 \ ax+b & ext{if} & 2 < x < 10 \ 21 & ext{if} & x \geq 10 \end{cases}$$
 is

continuous function.

Watch Video Solution

3. Prove that
$$\int_a^b (x)dx = \int_a^b f(a+b-x)dx$$
 and $\int_{rac{\pi}{4}}^{rac{\pi}{3}} rac{dx}{1+\sqrt{ an x}}.$

4.